BERTRAND’S POSULATE - PROBLEM WALKTHROUGH

ADAM KELLY (AK2316@CAM.AC.UK)

PROBLEM

Problem. Prove that for every n > 1, there is some prime number p with
n<p<2n.

WALKTHROUGH

Our proof will be based around various properties of the central binomial
coefficient (Qn") We will first prove a number of small lemmas, which will
then all come together in the final proof of the theorem.

(1) Show that Bertrand’s Posulate holds for ‘small’ n (say n < 512).
[You can do this by verifying (by hand!) that 2, 3, 5, 7, 13, 23, 43,
83, 163, 317, and 521 are all primes.]

(2) Prove that (27;1) > 4"/2n. [You may want to employ the binomial
theorem.]

(3) If p is a prime such that p® | (27’;), prove that p* < 2n. [Begin by
proving Legendre’s formula, and apply it to (2:) ]

(4) Prove that if 2n/3 < p < n for some prime p, then p{ (2:) [This is
just casework.]

(5) Define f(n) to be the product of all primes less than or equal to
n (with f(1) = 1). Prove by induction that f(n) < 4™. [For the
prime case, notice that f(2a + 1)/f(a + 1) divides (2a;r1), then use
the binomial theorem to get a weak inequality for the size of this.]

(6) Prove Bertrand’s Posultate by contradiction.

(a) Show that if n was such that there was no prime between n and
2n, then the prime factors of (%f) are all smaller than 2n/3.

(b) Noting for n > 5 we have v2n < 2n/3, write (27?) =P P,
where P is the product of primes at most v/2n and P’ is the
product of primes at least v/2n. Prove that P < (2n)V?" and
P’ < (2n/3)! < 427/3_and deduce that 47/3 < (2p)V2n+1,

(c) Find some N such that the above inequality does not hold for

all n > N. [You may need to compute derivatives to establish
this. It may also help to weaken the inequality slightly.]

(d) Finish off the proof.
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PROOF

(1). We obtain the weak bound

on (2:> > 924 (20— 1) <2:> > jzn;) (i’f‘) = (1+1)" = 4",

and thus (2:) > 4" /2n.

(2). For a prime p, we define v,(n) to be the largest integer o such that
p® | n. By Legendre’s formula we then have v,(n!) = 322, |n/p’|. We can
extend our definition of v, to Q, by letting v,(a/b) = vp(a) — v,(b), which
is consistent with our previous definition. Applying Legendre’s formula we
then have

(%) = wot(2n)) = vyt )

= Vp(( n)t) = 2vp(nl)

2525

‘Taking the integer out’, since L2aj —2la] = |2{a}] where {a} = a — |a]
and 0 < {a} < 1, we have 0 < |2a] —2|a] < 1. Thus if « is the largest
integer such that p® < 2n, for j > « the terms of the sum are zero, and for
7 < « the terms are either 0 or 1, giving

2n -
Vp<n) S;lga.

Going back to the definition of v, if p is a prime with p® dividing ( ) then
a < 1/,,(2:) < a, and p® < p® < 2n.

. . 2
(3). Suppose 2n/3 < p < n for some prime p. We wish to show that p { (:)
Since p < 2n and 2p < 2n but 2n < 3p, p must appear as a factor in (2n)!
exactly 2 times. But then it also appears as a factor in n! exactly 1 time,
and thus in (n!)? exactly 2 times. Thus it does not appear as a factor of

Sng' = (2”) as desired.

(4). Defining f(n) as in the walkthrough, we will show that f(n) < 4™ for
all n > 1. The first few values can be seen working by hand: f(1) =1 < 4!,
f(2) =2 <42 f(3) =6 < 43, f(4) = 6 < 4%. Now we will use induction.
Assuming that f(k) < 4* for all k < n, we will show that f(n) < 4". There
are two cases.

Case 1. m is composite. In this case, f(n) = f(n — 1) < 4" 1 < 4" and we
are done.

Case 2. n is prime. We will start by assuming that n is odd (we already
showed the case for n = 2), and write n = 2a + 1. The binomial coefficient



BERTRAND’S POSULATE - PROBLEM WALKTHROUGH 3

(2a+1

’ +1) is divisible by all primes between a + 1 and 2a + 1, that is,

f(2a+1) | <2a + 1)
f(a) a )
We can then bound the binomial coefficient with

2a+1
2a + 1 Z“ 2a + 1 1Z 2a + 1 5
< = — prnd 2 a+1 = 4a

J=0

and since f(2a +1)/f(a) | (2“:1) implies that (2a +1)/f(a) < (2aj1), we
have

fa+1) < <2a: 1>f(a) < 4940 < 420+

This completes our induction, and f(n) < 4™ for all n.

(5). Using these results, we will now prove Bertrand’s postulate. Assume
for a contradiction that there is some n > 1 such that there is no prime p
with n < p < 2n.

(a). If this is the case, the binomial coefficient (27?) would not be divisible

. . . 2
by any prime p > n. Also, if 2n/3 < p < n for some prime p then p { (7).
So the binomial coefficient must be divisible only by primes which are at
most 2n/3.

(b). For n > 5 we have v/2n < 2n/3. With this, we write

<2n) _p.p
n

where P is the product of primes which are at most v/2n, and P’ is the
product of primes which are at least v/2n.

Let P = p{'p5?---pi* be the prime factorisation of P. Then p;* | (2:) SO

by our previous result pi* < 2n. This implies P < (2n)*. Also, there can be
at most v/2n primes which are at most v/2n, so k < +/2n giving

P < (2n)V2",

Now let P’ = qf 1q2’62 . ~-qlﬁ ! be the prime factorisation of P’. Then since

V2n < qi, squaring shows 2n < ¢3. So to divide (271"), we must have 5, =
Bo = --- = [ = 1. P is then the product of distinct primes which are at

most 2n/3, so P < f(2n/3) < 427/3,

Combining these inequalities with the lower bound we obtained earlier,

2n — \n
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(c). We will now show that the inequality 4™/3 < (271)\/%Jrl does not hold

for suitably large n. This will then put an upper bound on the possible

counterexamples to Bertrand’s postulate, below we can then check by com-

putation.

Considering the opposite inequality and taking the logarithm, we have
(2n)m+1 < 4n/3

— (V2n+1)logy(2n) < 2n/3.
This is implied by the weaker inequality
(V21 + 1) logy(2n) < (20— 1)/3
= 0< (V2n—1)— 3log,(2n) (%)

Computing derivatives, we have

d 1 3

— [(Van - 1) = 3logy(2n)| = —— - .

4 [(V20 = 1) = Blogy(20)] = = — - (%)
So for n > 18/log?(2) the derivative is positive. Using a rough bound for
log(2), by taking say the power series, 1/4 < log?(2) so 72 > 18/log?(2),
and thus taking n > 72 will make the derivative positive.

Thus if we can find N such that (x) holds for N with N > 72, then it will
hold for all n > N. Indeed, taking N = 512 the inequality is

0<(32-1)—3%10=1,

which holds.

(d). Putting this all together, if n is a counterexample to Bertrand’s postu-
late then n < 512, but we can verify by hand that
{2,3,5,7,13,23,43,83,163,317,521}

are all primes, showing that Bertrand’s postulate holds for n < 512. Thus
there is no counterexamples, and Bertrand’s postulate must hold for all n.



