
BERTRAND’S POSULATE – PROBLEM WALKTHROUGH

ADAM KELLY (AK2316@CAM.AC.UK)

Problem

Problem. Prove that for every n ≥ 1, there is some prime number p with
n < p ≤ 2n.

Walkthrough

Our proof will be based around various properties of the central binomial
coefficient

(
2n
n

)
. We will first prove a number of small lemmas, which will

then all come together in the final proof of the theorem.

(1) Show that Bertrand’s Posulate holds for ‘small’ n (say n ≤ 512).
[You can do this by verifying (by hand!) that 2, 3, 5, 7, 13, 23, 43,
83, 163, 317, and 521 are all primes.]

(2) Prove that
(
2n
n

)
≥ 4n/2n. [You may want to employ the binomial

theorem.]

(3) If p is a prime such that pa |
(
2n
n

)
, prove that pa ≤ 2n. [Begin by

proving Legendre’s formula, and apply it to
(
2n
n

)
.]

(4) Prove that if 2n/3 ≤ p ≤ n for some prime p, then p -
(
2n
n

)
. [This is

just casework.]

(5) Define f(n) to be the product of all primes less than or equal to
n (with f(1) = 1). Prove by induction that f(n) < 4n. [For the

prime case, notice that f(2a + 1)/f(a + 1) divides
(
2a+1
a

)
, then use

the binomial theorem to get a weak inequality for the size of this.]

(6) Prove Bertrand’s Posultate by contradiction.

(a) Show that if n was such that there was no prime between n and

2n, then the prime factors of
(
2n
n

)
are all smaller than 2n/3.

(b) Noting for n ≥ 5 we have
√

2n < 2n/3, write
(
2n
n

)
= P · P ′,

where P is the product of primes at most
√

2n and P ′ is the

product of primes at least
√

2n. Prove that P ≤ (2n)
√
2n and

P ′ ≤ (2n/3)! ≤ 42n/3, and deduce that 4n/3 ≤ (2n)
√
2n+1.

(c) Find some N such that the above inequality does not hold for
all n ≥ N . [You may need to compute derivatives to establish
this. It may also help to weaken the inequality slightly.]

(d) Finish off the proof.
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Proof

(1). We obtain the weak bound

2n

(
2n

n

)
≥ 2 + (2n− 1)

(
2n

n

)
≥

2n∑
j=0

(
2n

j

)
= (1 + 1)2n = 4n,

and thus
(
2n
n

)
≥ 4n/2n.

(2). For a prime p, we define νp(n) to be the largest integer α such that
pα | n. By Legendre’s formula we then have νp(n!) =

∑∞
j=1bn/pjc. We can

extend our definition of νp to Q, by letting νp(a/b) = νp(a) − νp(b), which
is consistent with our previous definition. Applying Legendre’s formula we
then have

νp

(
2n

n

)
= νp((2n)!)− νp(n! · n!)

= νp((2n)!)− 2νp(n!)

=
∞∑
j=1

⌊
2n

pj

⌋
− 2

⌊
n

pj

⌋
.

‘Taking the integer out’, since b2ac − 2bac = b2{a}c where {a} = a − bac
and 0 ≤ {a} < 1, we have 0 ≤ b2ac − 2bac ≤ 1. Thus if α is the largest
integer such that pα ≤ 2n, for j > α the terms of the sum are zero, and for
j ≤ α the terms are either 0 or 1, giving

νp

(
2n

n

)
≤

α∑
j=1

1 ≤ α.

Going back to the definition of νp, if p is a prime with pa dividing
(
2n
n

)
, then

a ≤ νp
(
2n
n

)
≤ α, and pa ≤ pα ≤ 2n.

(3). Suppose 2n/3 < p < n for some prime p. We wish to show that p -
(
2n
n

)
.

Since p < 2n and 2p < 2n but 2n < 3p, p must appear as a factor in (2n)!
exactly 2 times. But then it also appears as a factor in n! exactly 1 time,
and thus in (n!)2 exactly 2 times. Thus it does not appear as a factor of
(2n)!
n!·n! =

(
2n
n

)
, as desired.

(4). Defining f(n) as in the walkthrough, we will show that f(n) < 4n for
all n ≥ 1. The first few values can be seen working by hand: f(1) = 1 < 41,
f(2) = 2 < 42, f(3) = 6 < 43, f(4) = 6 < 43. Now we will use induction.
Assuming that f(k) ≤ 4k for all k < n, we will show that f(n) < 4n. There
are two cases.

Case 1. n is composite. In this case, f(n) = f(n− 1) < 4n−1 < 4n, and we
are done.

Case 2. n is prime. We will start by assuming that n is odd (we already
showed the case for n = 2), and write n = 2a+ 1. The binomial coefficient



BERTRAND’S POSULATE – PROBLEM WALKTHROUGH 3(
2a+1
a+1

)
is divisible by all primes between a+ 1 and 2a+ 1, that is,

f(2a+ 1)

f(a)
|
(

2a+ 1

a

)
.

We can then bound the binomial coefficient with(
2a+ 1

a

)
≤

a∑
j=0

(
2a+ 1

a

)
=

1

2

2a+1∑
j=0

(
2a+ 1

a

)
= 22a+1 = 4a,

and since f(2a + 1)/f(a) |
(
2a+1
a

)
implies that (2a + 1)/f(a) ≤

(
2a+1
a

)
, we

have

f(2a+ 1) ≤
(

2a+ 1

a

)
f(a) ≤ 4a4a < 42a+1.

This completes our induction, and f(n) < 4n for all n.

(5). Using these results, we will now prove Bertrand’s postulate. Assume
for a contradiction that there is some n ≥ 1 such that there is no prime p
with n < p ≤ 2n.

(a). If this is the case, the binomial coefficient
(
2n
n

)
would not be divisible

by any prime p ≥ n. Also, if 2n/3 < p < n for some prime p then p -
(
2n
n

)
.

So the binomial coefficient must be divisible only by primes which are at
most 2n/3.

(b). For n ≥ 5 we have
√

2n < 2n/3. With this, we write(
2n

n

)
= P · P ′

where P is the product of primes which are at most
√

2n, and P ′ is the
product of primes which are at least

√
2n.

Let P = pα1
1 pα2

2 · · · p
αk
k be the prime factorisation of P . Then pαi

i |
(
2n
n

)
so

by our previous result pαi
i ≤ 2n. This implies P ≤ (2n)k. Also, there can be

at most
√

2n primes which are at most
√

2n, so k ≤
√

2n giving

P ≤ (2n)
√
2n.

Now let P ′ = qβ11 q
β2
2 · · · q

βl
l be the prime factorisation of P ′. Then since√

2n < q1, squaring shows 2n < q21. So to divide
(
2n
n

)
, we must have β1 =

β2 = · · · = βl = 1. P is then the product of distinct primes which are at
most 2n/3, so P ≤ f(2n/3) < 42n/3.

Combining these inequalities with the lower bound we obtained earlier,

4n

2n
≤
(

2n

n

)
= P · P ′ ≤ (2n)

√
2n42n/3 =⇒ 4n/3 ≤ (2n)

√
2n+1.
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(c). We will now show that the inequality 4n/3 ≤ (2n)
√
2n+1 does not hold

for suitably large n. This will then put an upper bound on the possible
counterexamples to Bertrand’s postulate, below we can then check by com-
putation.

Considering the opposite inequality and taking the logarithm, we have

(2n)
√
2n+1 ≤ 4n/3

⇐⇒ (
√

2n+ 1) log2(2n) ≤ 2n/3.

This is implied by the weaker inequality

(
√

2n+ 1) log2(2n) ≤ (2n− 1)/3

⇐⇒ 0 ≤ (
√

2n− 1)− 3 log2(2n) (∗)
Computing derivatives, we have

d

dn

[
(
√

2n− 1)− 3 log2(2n)
]

=
1√
2n
− 3

n log(2)
. (∗∗)

So for n ≥ 18/ log2(2) the derivative is positive. Using a rough bound for
log(2), by taking say the power series, 1/4 < log2(2) so 72 > 18/ log2(2),
and thus taking n ≥ 72 will make the derivative positive.

Thus if we can find N such that (∗) holds for N with N ≥ 72, then it will
hold for all n ≥ N . Indeed, taking N = 512 the inequality is

0 ≤ (32− 1)− 3 ∗ 10 = 1,

which holds.

(d). Putting this all together, if n is a counterexample to Bertrand’s postu-
late then n < 512, but we can verify by hand that

{2, 3, 5, 7, 13, 23, 43, 83, 163, 317, 521}
are all primes, showing that Bertrand’s postulate holds for n < 512. Thus
there is no counterexamples, and Bertrand’s postulate must hold for all n.


