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The direct product of two groups G,H is the set G ×H, along with the
operation of component wise composition,

(g1, h1) ∗ (g2, h2) = (g1 ∗G g2, h1 ∗H h2).

When a group can be written as a direct product, it becomes easier to reason
about as we can (in many cases) study the groups used in the direct product
rather than the group as a whole.

In this article, we will look at some ways of recognizing when a group is
isomorphic to a direct product. We will look at some concrete examples1

(and non-examples) and some general techniques.

1 The Direct Product Theorem

The following well known theorem (known as the direct product theorem,
amongst other names) gives one way of recognizing when a group is isomor-
phic to the direct product its subgroups.

Theorem 1.1 (Direct Product Theorem). Let H,K ≤ G such that

(i) H ∩K = {e}

(ii) ∀h ∈ H and k ∈ K, we have hk = kh

(iii) ∀g ∈ G, there exists h ∈ H, k ∈ K such that g = hk

then G ∼= H ×K.

Proof. Consider the function φ : H × K → G with φ(h, k) = hk. This is
clearly a homomorphism, so we wish to show that it is bijective (and hence
an isomorphism). By (iii), φ must be surjective and also if (h, k) ∈ ker(φ),

1Spoiler warning: some of these examples relate heavily to example sheet content.
This is because these questions happen to be pretty good (and quite standard) examples
of working with direct products. For other sources, email me.
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then hk = e, and k = h−1. Thus h, k ∈ H ∩K, and thus ker(φ) = {e}. Thus
φ is also injective, and hence G ∼= H ×K.

Let’s have a look at how this can be used to recognize some direct products.

Example 1.2. Is O(3) ∼= SO(3)× C2?

Solution. I claim that the answer is yes. Consider the subgroup H = {I,−I}
of O(3), which is isomorphic to C2. We will show that O(3) ∼= SO(3)×H ∼=
SO(3)× C2 using the direct product theorem.

• If a matrix M ∈ O(3), then det(M) = ±1, and is equal 1 iff M ∈
SO(3). But det(−I) = −1, thus H ∩ SO(3) = {I}.

• For any matrix M , −I ×M = M ×−I.

• For any matrix M ∈ O(3), we can write M = (±I)M ′ where M ′ ∈
SO(3) (where we use −I if M 6∈ SO(3)).

Thus O(3) ∼= SO(3)×H by the direct product theorem, and O(3) ∼= SO(3)×
C2 as required.

Example 1.3. Prove that D4n
∼= D2n × C2, where n is an odd number.

Solution. Consider the subgroups H = 〈r2, s〉 and K = 〈rn〉. We have that
H ∼= D2n and K ∼= C2. I claim that D4n

∼= H ×K. We will show this by
the direct product theorem.

• We have that rk ∈ H if and only if 2 | k, and thus as n is odd, rn 6∈ H,
and thus H ∩K = {e}.

• If h = rm for some m, then clearly rnrm = rmrn. Otherwise, we can
write h = rms for some m. Then rmsrn = rmr−ns = r−nrms = rnrms.
Thus rnh = hrn for all h ∈ H, and hk = kh for all k ∈ K, h ∈ H.

• If g ∈ D4n, then g = rmst for some m and t. If m is even, then g ∈ H.
Otherwise, we can write g = r2m

′+1st for some m′. Rewriting this,

g = rr2m
′
st

= rnr−(n−1)r2m
′
st

= rn(r2)m
′−n−1

2 st,

where rn ∈ K and (r2)m
′−n−1

2 st ∈ H. Thus any g ∈ D4n can be
written as g = hk where h ∈ H and k ∈ K.
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So by the direct product theorem, D4n
∼= H × K, and thus D4n

∼= D2n ×
C2.

Example 1.4. Is Q×, the group of non-zero rationals with multiplication,
the direct product of two non-trivial groups?

Solution. Let H = {q ∈ Q× | q > 0} and K = {1,−1}. I claim that
Q× ∼= H ×K.

First note that H,K ≤ Q×. Now we will use the direct product theorem.
We have H ∩K = {1}, and as Q× is abelian, we have hk = kh for all h ∈ H
and k ∈ K. Finally, if q ∈ Q×, we can write q = ±1 · |q| where ±1 ∈ K and
|q| ∈ H. Thus by the direct product theorem, Q× ∼= H×K as required.

2 ���
��XXXXXSeven Two Deadly Sins

There are two common mistakes that are made when trying to recognize
a direct product using the direct product theorem. Both of them basically
boil down to the following:

The direct product theorem is not ‘if and only if ’.

In short – just because H ×K isn’t isomorphic to G by the direct product
theorem doesn’t mean that it’s not isomorphic at all. Let’s dig into this a
bit more.

2.1 Sin One – Forgetting Other Isomorphisms

The direct product theorem takes a group G and two subgroups H,K ≤ G,
forms the direct product H×K, and then tries to use a specific isomorphism
φ(h, k) = hk to see if H ×K ∼= G. A common sin is forgetting that there
can be other isomorphisms from H ×K → G.

In the next example, we will see a solution that is incorrect for precisely this
reason.

Example 2.1. Let G = {(g1, g2, g3, . . . ) | gi ∈ {0, 1}, i ∈ N} be a group
with the binary operation of component-wise addition modulo 2. Let H =
{g ∈ G | g1 = 0} and K = {g ∈ G | g1 = g2 = 0}. Is G ∼= H ×K?

Wrong Solution. Clearly (0, 0, 1, 1, 1, . . . ) ∈ H,K, so H ∩ K 6= {e}. Also
(1, 0, 0, . . . ) ∈ G but cannot be written in the form h+ k for h ∈ H, k ∈ K.
Thus H ×K 6∼= G by the direct product theorem.
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Okay so that’s incorrect, but why? Well all we have shown is that the specific
isomorphism used in the direct product theorem proof fails... we forgot that
there can be other isomorphisms!

Correct Solution. I claim that H × K ∼= G. Consider the function φ :
H × K → G, with φ(h, k) = (h2, k3, h3, k4, h4, k5, . . . ). This is clearly a
homomorphism, and is clearly bijective, so it is an isomorphism and H×K ∼=
G.

Example 2.2. Is O4
∼= SO4 × C2?

Wrong Solution. I claim the answer is no. Note that C2
∼= {I,−I}, but then

det(−I) = 1, and thus SO4 ∩ {I,−I} 6= {e}, and O4 6∼= SO4 × C2 by the
direct product theorem.

Here the answer is correct but just like before, the proof is completely wrong.
In fact, there’s even more reasons why it’s wrong. First of all, we only
consider the subgroup C2

∼= {I,−I}. This isn’t the only subgroup of O4

that’s isomorphic to C2, so we have only shown that this specific subgroup
doesn’t work. For example, if we used the subgroup

H =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


 ,

then SO4 ∩H = {e}... but then other parts of the direct product theorem
will fail. In reality, the core issue (and why this can’t be patched up) is that
we have only tried one specific isomorphism, just like in the last example.

If you haven’t already, I encourage you to think about how to solve this
problem correctly.

2.2 Sin Two – Forgetting Other Subgroups

The previous example hinted at another deadly sin: forgetting about other
subgroups.

Let’s say we had some group G, and we wanted to try show that G ∼= H×K.
It might be tempting to try and see if some subgroups H ′,K ′ ≤ G with
H ′ ∼= H and K ′ ∼= K satisfy the direct product theorem. If you do this, and
it doesn’t work, you may have been led astray

Let’s jump into a slightly contrived but hopefully instructive example.
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Example 2.3 (Contrived). Let G = {e, g, h, gh} be a group such that g2 =
h2 = e and gh = hg. Is G ∼= C2 × C2?

Wrong Solution. I claim that the answer is no. Let H = {e, gh}, and K =
{e, gh} Then H,K ∼= C2. But H ∩K 6= {e} and g cannot be written g = hk
for h ∈ H, k ∈ K. Thus by the direct product theorem, G 6∼= C2 × C2.

The problem with the proof above (apart from the previous sin about how we
have only considered one isomorphism) is that we just picked some arbitrary
isomorphic subgroup and stuck with it. In reality, using the direct product
theorem may require you to use ‘well chosen’ subgroups.

Correct Solution. Let H = {e, h} and K = {e, g}. Then H,K ∼= C2. Also
H ∩K = {e}, hk = kh for all h ∈ H, k ∈ K, and any element in G can be
written as the product of elements in H and K. Thus by the direct product
theorem, we have G ∼= H ×K ∼= C2 × C2.

To see the same sort of incorrectness in action, consider a special case of
Example 1.3.

Example 2.4. Is D12
∼= D6 × C2?

Wrong Solution. I claim that the answer is no. If H = D6 and K = 〈s〉 ∼=
C2, then H∩K 6= {e}, so by the direct product theorem D12 6∼= D6×C2.

So to sum it all up, remember this:

We can’t use the direct product theorem to conclude that a group is not a
direct product.

3 Proving We Don’t Have A Direct Product

So the last section showed a bunch of ways that we can’t show some group
is not isomorphic to a direct product. So a natural question is eh... how do
we show it then? The answer to this is, naturally, it depends. However, a
good strategy is to look at the properties of the group.

This is, of course, a meta strategy, but usually finding some difference be-
tween two groups is a great way of showing that they aren’t isomorphic, and
the same applies for direct products.

Some properties that you can look at are things like

• properties of all direct products
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• order of elements

• order of the groups

• number of subgroups of a certain order

• the center or normalizer of the groups

• number of generators

of course there is many others. Example time!

Example 3.1. Prove that An × C2 6∼= Sn for n ≥ 3.

Solution. We consider the center of each group. For n = 3, Z(A3 × C2) =
An×C2 since An is abelian, but Z(S3) is trivial. For n ≥ 4, Z(An×C2) = C2,
but Z(Sn) is again trivial. Thus An × C2 6∼= Sn for all n ≥ 3.

Example 3.2. Prove that Q, the additive group of rationals, is not the
direct product of two non-trivial groups.

Solution. If Q ∼= H×K for nontrivial H,K, then there exists two nontrivial
subgroups H ′,K ′ ≤ Q such that H ′ ∩K ′ = {e}2. Then, as H ′ and K ′ are
non-trivial, let x

y ∈ H
′ and a

b ∈ K
′. Then y · xy = x ∈ H ′, and b · ab = a ∈ K ′

by addition. But then ax ∈ H ′ ∩ K ′, which is a contradiction. Thus Q
cannot be written as the direct product of two non-trivial groups.

Example 3.3. Prove that D2n 6∼= Cn × C2 for n ≥ 3.

Solution. Note that Cn × C2 is abelian, but D2n is not.

Example 3.4. Is Cp2
∼= Cp × Cp?

Solution. I claim the answer is no. The group Cp×Cp cannot be generated
by a single element, whereas the group Cp2 can.

2Note that this may seem like one of the previous fallacies, but in fact we are not
invoking the direct product theorem. We are merely using properties that come from the
definition of the direct product.
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