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In a hallway, there is a finite set of doors D that you would like to open
and a finite set of single-use keys K. Each key can unlock some subset
of the doors, and is destroyed immediately after unlocking. Under what
circumstance is it possible to open all of the doors?

1 Hall’s Condition

In answering this question, we might try and think about reasons why it may
not be possible. The simplest reason is when there’s not enough keys to go
around, when |D| ≥ |K|. Another reason is when there seems to be enough
keys overall, but you find that there’s not enough keys compatible some
subset of the doors to unlock them all. We call these two basic requirements
Hall’s condition.

Definition (Hall’s Condition). We say a collection of doors and keys satis-
fies Hall’s condition if for any k doors there are at least k keys which at
one door is opened by.

It turns out that these basic requirements are the only requirements that we
need to satisfy to open all of the doors.

2 Hall’s Theorem

Theorem 2.1 (Hall’s Theorem). If is possible to open all of the doors if
and only if Hall’s condition is satisfied.

Proof. Obviously this is a necessary condition, so we are left to prove that
it’s sufficient. We are going to induct on the number of doors.

We begin by noticing that if there’s a proper subset of doors D′ such that
the doors in D′ are opened by exactly |D′| keys, then if K ′ is this set of keys
we will have to open the doors in D′ using the keys K ′. Luckily we know
this is possible by induction, and afterwards if we ignore the open doors
then Hall’s condition still holds.

1



We can repeat this until there’s no such subset of doors, but then we can just
open the first remaining door with any remaining key, and Hall’s condition
will still hold for the remaining doors and keys, and we are then done by
induction.

3 Problems

Problem 3.1. Let S = {1, 2, . . . , 2015}. Prove that there exists an injective
function

f :

(
S

1007

)
↪→

(
S

1008

)
such that T ⊆ f(T ) for every T . (Here

(
S
k

)
is the set of k-element subsets

of S.)

Problem 3.2. Let G = A∪B be a bipartite graph on 2n vertices with min-
imum degree n/2 and |A| = |B| = n. Show that G has a perfect matching.

Problem 3.3. A square sheet of paper of side length n is divided up into
n polygons each of area n. A second square sheet of paper of side length n
is also divided up into n polygons each of area n. The first sheet of paper is
placed on top of the second sheet of paper, with both sheets aligned in the
same way so that the first sheet completely covers the second. Show that it
is possible to stick n pins through the sheets in such a way that each of the
2n polygons has a pin through it.

Problem 3.4. For what values of k on a 1000×1000 chessboard is it possible
to delete k squares from the board and still place 1000 non-attacking rooks
on the board?

Problem 3.5. An n× n Latin square is an n× n square array of numbers
with each of the numbers 1, 2, . . ., n appearing precisely once in each row
and precisely once in each column. For r < n. an r × n Latin rectangle is
an r× n rectangular array of numbers (r rows, n columns) with each of the
numbers 1, 2, . . ., n appearing precisely once in each row and at most once
in each column. Prove that every r× n Latin rectangle may be extended to
an n× n Latin square.

Problem 3.6. Let G be a bipartite graph on A∪B with no isolated vertices.
Assume that for each edge ab we have deg a ≥ deg b. Prove that G contains
a matching using all vertices in A.
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Problem 3.7. A round-robin tournament among 2n teams lasted for 2n−1
days, as follows. On each day, every team played one game against another
team, with one team winning and one team losing in each of the n games.
Over the course of the tournament, each team played every other team
exactly once. Can one necessarily choose one winning team from each day
without choosing any team more than once?

Problem 3.8. Let n ≥ 4 be an integer. A flag is a binary string of length
n. We say that a set of n flags is diverse if these flags can be the rows
of an n × n binary matrix with the entries in its main diagonal all equal.
Determine the smallest positive integer M such that among any M distinct
flags, there exist n flags forming a diverse set.
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