A Crash Course in Integration in \mathbb{R}^{2} and \mathbb{R}^{3}

Adam Kelly (ak2316@cam.ac.uk)

May 27, 2021

This is a no-frills description of how to integrate over curves, areas, volumes and surfaces in \mathbb{R}^{2} and \mathbb{R}^{3}. Very little will be actually motivated, but it should (hopefully) still be helpful.

1 The Line Integral

Suppose you have a regular curve C, parametrised by some function $\mathbf{x}(t)$, where $a \leq t \leq b$, and you want to integrate some other function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ over the curve.

Then we have, integrating from $\mathbf{x}(a)$ to $\mathbf{x}(b)$,

$$
\int_{C} f(\mathbf{x}) \mathrm{d} s=\int_{a}^{b} f(\mathbf{x}(t))\left|\frac{\mathrm{d} \mathbf{x}(t)}{\mathrm{d} t}\right| \mathrm{d} t .
$$

If instead we wanted to integrate over some vector field (by say taking the dot product of that vector field with the unit tangent), then since $\mathrm{d} \mathbf{x}(t) / \mathrm{d} t$ is tangent to the curve, we would have

$$
\int_{C} F(\mathbf{x}) \cdot \mathrm{d} \mathbf{x}=\int_{a}^{b} \mathbf{F}(\mathbf{x}(t)) \cdot \frac{\mathrm{d} \mathbf{x}}{\mathrm{~d} t} \mathrm{~d} t
$$

where again we integrate from $\mathbf{x}(a)$ to $\mathbf{x}(b)$.

2 Area and Volume Integrals

Suppose you have some closed region $D \subset \mathbb{R}^{2}$, and you wanted to integrate some function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ over the region.

Then integrate over say the x coordinate first (where the bounds of the inner integral will depend on y), we have

$$
\iint_{D} f(\mathbf{x}) \mathrm{d} A=\iint_{(x, y) \in D} f(x, y) \mathrm{d} x \mathrm{~d} y
$$

Of course we could have integrated over the y coordinate first, and would probably give the same result.

We can also do a change of coordinate. Suppose we have $x=x(u, v)$ and $y=y(u, v)$ being smooth bijections (with smooth inverse) mapping D^{\prime} in the (u, v)-plane to the region D in the (x, y)-plane. Then we have

$$
\iint_{(x, y) \in D} f(x, y) \mathrm{d} x \mathrm{~d} y=\iint_{(u, v) \in D^{\prime}} f(x(u, v), y(u, v))|J| \mathrm{d} u \mathrm{~d} v
$$

where

$$
|J|=\left|\frac{\partial(x, y)}{\partial(u, v)}\right|=\left|\operatorname{det}\left(\left.\frac{\partial \mathbf{x}}{\partial u} \right\rvert\, \frac{\partial \mathbf{x}}{\partial v}\right)\right|=\left|\operatorname{det}\left(\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right)\right|
$$

is the Jacobian.
Basically the exact same thing is true for volume integrals - I won't bore you with the details. Just use three variables and change the Jacobian accordingly.

3 Surface Integrals

Suppose you have a surface S, parametrised with

$$
S=\{\mathbf{x}(u, v) \mid(u, v) \in D\},
$$

for some region D in the (u, v)-plane. Suppose also that you wanted to integrate some function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ over the surface.

Then we would have

$$
\iint_{S} f(\mathbf{x}) \mathrm{d} S=\iint_{D} f(\mathbf{x}(u, v))\left|\frac{\partial \mathbf{x}}{\mathrm{d} u} \times \frac{\partial \mathbf{x}}{\partial v}\right| \mathrm{d} u \mathrm{~d} v
$$

If instead we wanted to integrate over some vector field $\mathbf{F}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ by taking the dot product of the vector field with the unit normal (a flux integral), then since $\frac{\partial \mathbf{x}}{\mathrm{d} u} \times \frac{\partial \mathbf{x}}{\partial v}$ is normal to the curve, we would have

$$
\iint_{S} \mathbf{F}(\mathbf{x}) \cdot \mathrm{d} \mathbf{S}=\iint_{D} \mathbf{F}(\mathbf{x}(u, v)) \cdot\left(\frac{\partial \mathbf{x}}{\mathrm{d} u} \times \frac{\partial \mathbf{x}}{\partial v}\right) \mathrm{d} u \mathrm{~d} v .
$$

It's worth noting here that by doing this, we implicitly chose a direction for the normal (there's 2 !). If we wanted the other direction, we can just negate the integral.

4 Integral Theorems

Having read that, you are clearly now an expert integrator, keen to speed up your multidimensional calculations. Luckily we have a few results at our disposal which we will state (naturally) without proof. Throughout, we will use the notation ∂A to denote the boundary of A.

Theorem 4.1 (Conservative Vector Fields). Suppose the vector field \mathbf{F} can be written as $\mathbf{F}=\nabla f$ for some scalar function f. Then if C is any curve from $\mathbf{x}(a)$ to $\mathbf{x}(b)$, we have

$$
\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{x}=f(\mathbf{x}(b))-f(\mathbf{x}(a)) .
$$

Theorem 4.2 (Green's Theorem). $P=P(x, y)$ and $Q=Q(x, y)$ are continuously differentiable functions on A and ∂A is made from a collection of piecewise smooth curves, then

$$
\int_{\partial A} P \mathrm{~d} x+Q \mathrm{~d} y=\iint_{A}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \mathrm{d} x \mathrm{~d} y .
$$

The orientation of the boundary ∂A is such that A lies to your left as you traverse it.

Theorem 4.3 (Stokes' Theorem). If $\mathbf{F}=\mathbf{F}(\mathbf{x})$ is a continuously differentiable vector field and S is an orientable, piecewise regular surface with piecewise regular boundary ∂S then

$$
\int_{S}(\nabla \times \mathbf{F}) \cdot \mathrm{d} \mathbf{S}=\int_{\partial S} \mathbf{F} \cdot \mathrm{~d} \mathbf{x} .
$$

Theorem 4.4 (Divergence Theorem in $\left.\mathbb{R}^{3}\right)$. If $\mathbf{F}=\mathbf{F}(\mathbf{x})$ be a continuously differentiable vector field and V is a volume with a piecewise regular boundary ∂V then

$$
\int_{V} \nabla \cdot \mathbf{F} \mathrm{~d} V=\int_{\partial V} \mathbf{F} \cdot \mathrm{~d} \mathbf{S}
$$

where the normal to ∂V points outwards from V.
Theorem 4.5 (Divergence Theorem in \mathbb{R}^{2}). Let $\mathbf{F}=\mathbf{F}(\mathbf{x})$ be a continuously differentiable vector field and $D \subset \mathbb{R}^{2}$ region with piecewise smooth boundary ∂D then

$$
\int_{D} \nabla \cdot \mathbf{F} \mathrm{~d} A=\oint_{\partial D} \mathbf{F} \cdot \mathbf{n} \mathrm{~d} s
$$

where the unit normal \mathbf{n} to ∂D points outwards from D.

