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Quotient groups arise naturally in the study of homomorphisms. When
we have two groups G and H, and some homomorphism ϕ : G → H, we
can see that the elements of G mapping to certain elements of H naturally
arrange themselves together.
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Indeed, if two elements of G map to the same element of H under ϕ, we
would find that the two elements must differ by an element of the kernel of
ϕ. So, going back to how the elements of G arrange themselves, it would
seem that they are arranged into cosets of the kernel of ϕ. It is this observa-
tion that leads us to the definition of quotient groups and the isomorphism
theorems.

From the discussion above, it is natural to see when we can make the
cosets of a given subgroup into another group. It turns out that this only
works when we have a specific type of subgroup.

Definition (Normal Subgroup). We say that a subgroup N of a group G is
normal if the left and right cosets coincide, that is, gN = Ng for all g ∈ G.
If N is normal in G we write N E G.

Now we can show that the set of cosets of N in G, written G/N , forms a
group.

Theorem (Quotient Groups). If N E G, then the set of cosets of N in G
forms the quotient group G/N with the operation of coset multiplication,
where gN · g′N = (gg′)N .

Proof. We first need to check that coset multiplication is well defined. If we
had a1N = a2N and b1N = b2N , then a1 = a2na and b1 = b2nb for some
na, nb ∈ N . Then (a1b1)N = (a2nab2nb)N = (a2b2)N , since N is normal in
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G. So our group operation is well defined, and we are just left to check the
group axioms.

We have closure since g1N and g2N being cosets implies (g1g2)N is too.
Then we have the identity element N , and inverses with gN · g−1N = N .
Finally we get associativity inherited from G, thus we do indeed have a
group. �

Now we initially tried to motivate thinking about groups of cosets by
noticing that elements in the same coset of the kernel of φ had the same
image. We then used this ‘normal’ property of a subgroup to make this
actually work. It turns out that these express the same idea – normal
subgroups are exactly the kernels of homomorphisms.

Theorem (Kernels are Normal Subgroups). If φ : G → H is a homomor-
phism, then kerφ E G.

Proof. We already know that the kernel of a homomorphism is a subgroup,
so we just need to check that it is normal. Let n ∈ kerφ, and g ∈ G.
Then φ(gng−1) = φ(g)φ(n)φ(g−1) = φ(g)φ(g−1) = e, thus gng−1 ∈ kerφ, so
kerφ E G as required. �

Theorem (Normal Subgroups are Kernels). Given N E G, the map π :
G 7→ G/N with π(g) = gN is a surjective homomorphism called the quo-
tient map, and kerπ = N .

Proof. We first check that π is a homomorphism. For g, h ∈ G, we have
π(gh) = (gh)N = gN · hN = π(g)π(h) as required. This map is clearly
injective, and also π(g) = gN = N ⇐⇒ g ∈ N , so kerπ = N , as required.

�

Looking back again to our original motivation, we can see that the cosets
of the kernel seem to form the group that is the image of the homomorphism.
This is the exact idea encompassed in quotient groups, and is formalised in
the first isomorphism theorem.

Theorem (First Isomorphism Theorem). Let ϕ : G → H be a homomor-
phism. Then G/ kerϕ ∼= imgϕ.

Proof. Consider the map ϕ : G/ kerϕ → imgϕ with g kerϕ 7→ ϕ(g). It’s
easy to see that this is well defined and to check that it’s a homomorphism.
It’s also clearly bijective, and is thus an isomorphism. �

In a sense, this is the way that you should think about normal subgroups
and quotient groups – as the kernels and images of homomorphisms.


