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Informally, group theory is the study of certain structures that occur when we think
about symmetries in a mathematical way. In this course, we will look at what groups
are, their basic properties – with lots of examples.

This article constitutes my notes for the ‘Groups’ course, held in Michaelmas 2020 at
Cambridge. These notes are not a transcription of the lectures, and differ significantly
in quite a few areas.
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§1 Groups

‘Groups’ is a course which introduces you to the subject of Abstract Algebra. Indeed,
while groups are one of the simplest and most basic of all the algebraic structures, they
are immensely useful and appear in almost every area of mathematics.

§1.1 Definition of a Group

We will begin our study of the subject by defining formally what a group is.

Definition 1.1 (Group)

A group is a set G with a binary operationa ∗ which satisfies the axioms:

• Identity. There is an element e ∈ G such that g ∗e = e∗g = g for every g ∈ G.

• Inverses. For every element g ∈ G, there is an element g−1 ∈ G such that
g ∗ g−1 = g−1 ∗ g = e.

• Associativity. The operation ∗ is associative.

aSome texts include an additional closure axiom, but this is implied by ∗ being a binary operation
on G.

We typically refer to a group as defined above by (G, ∗), which explicitly states that
∗ is the group operation. When the operation being used is clear, we can refer to the
group by just G. We will also be omitting the group’s operation symbol quite often, for
example writing gh = g ∗ h. If G is finite, we call |G| the order of the group.

In a later section, we will look at some non-trivial examples of groups.
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§1.1.1 Elementary Properties of Groups

With the notion of a group now defined, we can now consider some basic facts that follow
directly from the definition of a group. We will first address whether it is possible for
a group to have multiple identity elements, or for an element to have multiple inverses
(no).

Proposition 1.2 (Uniqueness of the Identity and Inverse)

Let (G, ∗) be a group. Then there is a unique identity element, and for every g ∈ G,
g−1 is unique.

Proof. To prove that the identity element is unique, let e and e′ be identity elements
of G. Then e ∗ e′ = e and e ∗ e′ = e′ by definition, giving e = e′.

To prove that the inverses are unique, suppose that for some g, h, k ∈ G we have
g ∗ h = g ∗ k = e. Then g−1 ∗ g ∗ h = g−1 ∗ g ∗ k, implying h = k. The case of
h ∗ g = k ∗ g = e follows analogously.

The next useful fact is the cancellation law, whose proof bears a large resemblance to
the proof that inverses are unique.

Proposition 1.3 (Cancellation Law)

If (G, ∗) is a group, and a, b, c ∈ G, then a ∗ b = a ∗ c and b ∗ a = c ∗ a both imply
b = c.

Proof. Taking a∗b = a∗c and left-multiplying by a−1 we have a−1∗a∗b = a−1∗a∗c,
that is, b = c. The other case follows analogously.

The last proposition we will prove in this section gives us a useful result about computing
inverses.

Proposition 1.4 (Computing Inverses)

Let (G, ∗) be a group, and let g, h ∈ G. Then the following hold:

(i) (g ∗ h)−1 = h−1 ∗ g−1.

(ii) (g−1)−1 = g.

Proof.

(i) We have (g ∗h) ∗ (h−1 ∗ g−1) = g ∗ (h ∗h−1) ∗ g−1 = g ∗ g−1 = e, so (g ∗h)−1 =
h−1 ∗ g−1.

(ii) Similarly, g−1 ∗ g = e, so (g−1)−1 = g.

§1.1.2 Examples of Groups

It’s probably of some use to have concrete examples of groups in your head, so you can
get a feel for what they are. In this section we will present some non-trivial examples of
groups (and some examples of non-groups).
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It should be recognized that commutativity is not a group axiom, and the majority of
groups are not commutative. We do have a name for groups where the binary operation
is commutative though.

Definition 1.5 (Abelian Groups)

We say a group (G, ∗) is abelian if ∗ is commutative, that is, if for any g, h ∈ G,
g ∗ h = h ∗ g.

In this section, we will consider examples of both abelian and non-abelian groups1. In
the first few cases, the reasons why they are a group are stated. For the others, you
should consider how they satisfy the group axioms yourself.

Example 1.6 (The Trivial Group)

The trivial group is a group whose only element is the identity, {e}.

Example 1.7 (Additive Group of Integers)

(Z,+) is an group. We have

• The identity element 0 ∈ Z, as a+ 0 = 0 + a = a for any a ∈ Z

• The inverse of a ∈ Z being −a, as a+ (−a) = (−a) + a = 0.

• The operation + is associative and commutative.

We also have the additive group of rationals (Q,+), of reals (R,+), and of complex
numbers (C,+) for the same reasons.

Example 1.8 (Addition Modulo n)

Let n ∈ N, and let Z/nZ = {0, 1, . . . , n − 1} denote the set of residues modulo n.
Then (Z/nZ,+) is a group (where addition is done modulo n). We have

• The identity element is 0 (mod n), as a+ 0 ≡ 0 + a ≡ a (mod n).

• The inverse of a ∈ Z/nZ is −a, as a+ (−a) ≡ 0 (mod n).

• Addition modulo n is associative.

Example 1.9 (Non-Zero Rationals)

Let Q× denote the set of non-zero rationals. Then (Q×,×) is a group.

Similarly, we also have the groups (R×,×) and (C×,×).

Example 1.10 (Multiplication Modulo p)

Let p be a prime, and let (Z/pZ)× denote the set of non-zero residues modulo p.
Then ((Z/pZ)×,×) is a group (where multiplication is done modulo p).

1If you are not familiar with some of the concepts used, such as matrices or modular arithmetic, feel
free to ignore those examples.
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Example 1.11 (General Linear Group)

Let GLn(R) be the set of n×nmatrices with non-zero determinant. Then (GLn(R),×)
is the general linear groupa.

aUsing matrix multiplication

Example 1.12 (Special Linear Group)

Let SLn(R) be the set of n × n matrices with determinant 1. Then (SLn(R),×) is
the special linear group.

Non-Examples of Groups

We will now give some examples of sets with operations that are not groups. It should
be useful to think about why each example does not satisfy the group axioms.

Example 1.13 (Non-Examples of Groups)

The following are are all not groups.

• (Z,×)

• (Q,×)

• The set of 2× 2 matrices with matrix multiplication.

• (R, ∗) where r ∗ s = r × r × s

• (N, ∗) where n ∗m = |n−m|.

§1.2 Subgroups

Given any mathematical structure, it can be useful to know about its substructure. In
the case of a group (G, ∗), one might ask the question is there some subset H ⊆ G that
still acts like a group? This motivates the introduction of subgroups.

Definition 1.14 (Subgroups)

Let (G, ∗) be a group. A subset H ⊆ G is a subgroup of G if (H, ∗) is also a group.
If H is a subgroup of G, we will write H ≤ G.

Example 1.15 (Examples of Subgroups)

The following are subgroups.

• For any group G, we have the trivial subgroups {e} ≤ G and G ≤ G.

• Z ≤ Q ≤ R ≤ C with addition.

• {0, 2, 4, . . . } ≤ Z with addition.

• SLn(R) ≤ GLn(R) with matrix multiplication.

Checking whether something is a subgroup is easier than checking if something is a
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group, since we already know about the structure of the group. To check whether H is
a subgroup of (G, ∗), we can just check the following hold:

• Closure. ∗ is closed in H.

• Identity. e ∈ H.

• Inverses. For h ∈ H, we also have h−1 ∈ H.

These can all be combined into a single test, that is sometimes known as the ‘subgroup
checking lemma’.

Lemma 1.16 (Subgroup Criterion)

A subset H of a set G is a subgroup of (G, ∗) if and only if H is non-empty and
x ∗ y−1 ∈ H for all x, y ∈ H.

Proof Sketch. First check that the conditions of H being non-empty and x∗y−1 ∈ H
imply that it’s a subgroup. Then, show that if H is not a subgroup, then either H
is empty or x ∗ y−1 6∈ H for some x, y ∈ H.

As an example of using subgroups, let’s try to characterize all of the subgroups of (Z,+).

Theorem 1.17 (Subgroups of Z)

The subgroups of (Z,+) are precisely the subsets of the form nZ for n ∈ N , where
nZ = {nk : k ∈ Z}.

Proof. First, we prove that nZ is a subgroup. Fix n ∈ N.

• Closure. Given nk1, nk2 ∈ nZ, then nk1 + nk2 = n (k1 + k2) ∈ nZ.

• Identity. 0 = n · 0 ∈ nZ.

• Inverses. The inverse of nk is −nk = n(−k) ∈ nZ.

Thus each is subgroup. Now we prove that there is no other subgroups.

Let H ≤ Z. If H = {0}, then H ≡ 0Z. If not, then take the smallest positive
element in H (namely n). Since H is a subgroup, it’s closed and contains inverses,
so n+ n+ · · ·+ n ∈ H and −n− n− n− · · · − n ∈ H, so nZ ⊆ H.

Suppose, for a contradiction, there is some k ∈ H such that k 6= nZ. So, there is
some integer n such that nm < k < n(m + 1). But then 0 ≤ k − nm < n, and
k − nm ∈ H which is a contradiction, so H = nZ.

We can use the definition of a subgroup to prove some elementary facts.

Proposition 1.18 (Elementary Properties of Subgroups)

Let G be a group.

(i) Let H and K be subgroups of G. Then H ∩K ≤ G.

(ii) If K ≤ H and H ≤ G then K ≤ G (being a subgroup is transitive).
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(iii) If K ⊂ H, H ≤ G and K ≤ G, then K ≤ H.

Proof. There is multiple ways to prove these, but we will use the subgroup criterion
as an example of it being used.

(i) Note that H∩K is not empty as e ∈ H and e ∈ K. Then, for any x, y ∈ H∩K,
it suffices to show that x ∗ y−1 ∈ H. By the subgroup criterion, we have
x ∗ y−1 ∈ H and x ∗ y−1 ∈ K, thus x ∗ y−1 ∈ H ∩K, and we are done.

(ii) If K ≤ H, then for any x, y ∈ K, we have x ∗ y−1 ∈ K. Then as K ⊂ H ⊂ G,
we must have x ∗ y−1 ∈ G, and thus K ≤ G.

(iii) As K ≤ G, we know K is non-empty. Thus it suffices to show that x∗y−1 ∈ K
for any x, y ∈ H. But this is implied by K ≤ G and the subgroup criterion,
and thus as K ⊂ H, K ≤ H.

§1.2.1 Generators

We will now consider a certain kind of subgroup, which is specified by some of the
elements it contains.

Definition 1.19 (Subgroup Generated By A Subset)

For some set X ⊆ G, we define the subgroup generated by X, 〈X〉, to be the
smallest subgroup of G which contains X.

From this definition, we can see that we must have e ∈ 〈X〉 and X ⊆ 〈X〉. Also, 〈X〉
must contain all products of elements in X and their inverses. We can put this in a more
useful form with the following proposition.

Proposition 1.20

Let X be a non-empty subset of G. Then 〈X〉 is the set of elements of G of the
form xα1

1 xα2
2 · · ·x

αk
k where xi ∈ X (not necessarily distinct), αi = ±1 and k ≥ 0 (For

k = 0, we say the element is e).

Proof. Let T be the set of such elements. Clearly T ⊆ 〈X〉, and also clearly T is a
subgroup of G. We also have that X ⊆ T so 〈X〉 ⊆ T . Thus T = 〈X〉.

Example 1.21

We have (Z,+) = 〈1〉 = 〈2, 3〉a, and Z/5Z = 〈1〉 = 〈3〉.
aNote that we write 〈2, 3〉 instead of 〈{2, 3}〉.

In the above examples, we found that there was some subset of the elements in each of
the group where if we considered the subgroup generated by those elements, we get the
entire group. There is a special name for such subsets.

Definition 1.22 (Generators)
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If X is a subset of G such that 〈X〉 = G, then we call X a generating set of G.

Notably, these generators are not necessarily unique, as can be seen in the example
above.

§1.3 Homomorphisms

Imagine you had two groups, G and H and you wanted to think of a function from
H to G that preserved some of the structure of the group. Let’s say the function was
φ : H → G. We could take any two elements h1, h2 ∈ H, and we could find h1h2, and
then apply φ to get φ(h1h2). Alternatively, we could try and find φ(h1) and φ(h2), and
then get φ(h1)φ(h2). If these were the same, then the function φ would indeed preserve
some of the structure of the group. This motivates the introduction of homomorphisms.

Definition 1.23 (Homomorphism)

Let (G, ∗G) and (H, ∗H) be groups. A function φ : H → G is a group homomor-
phism if for all a, b ∈ H,

φ(a ∗H b) = φ(a) ∗G φ(b).

Example 1.24 (Inclusion Function)

If H ≤ G, then the function ι : H → G that has ι(h) = h for h ∈ H is a homomor-
phism. It is also injective.

Example 1.25

The function φ : Z → Z/nZ with φ(k) = k (mod n) is a homomorphism, since for
k, l ∈ Z,

φ(k + l) = (k + l) mod n = (k mod n) + (l mod n) = φ(k) + φ(l).

φ is also surjective, since {0, 1, · · · , n− 1} are all the possible residues modulo n.

Example 1.26

The function φ : (R,+)→ (R∗, ·) where x→ ex is a homomorphism. We have

φ(x+ y) = ex+y = ex · ey = φ(x) · φ(y).

It is injective, as ex = ey implies x = y using logarithms, and surjective, as given
a ∈ R∗, φ(log a) = elog a = a.

We can see some natural consequences of this definition of a homomorphism, which
shows how well it preserves the group’s structure.

Proposition 1.27 (Properties of Homomorphisms)

Let φ : H → G be a homomorphism.
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(i) φ(eh) = eg.

(ii) φ(h−1) = φ(h)−1 for all h ∈ H.

(iii) If ψ : G → K is another homomorphism, then ψ ◦ φ : H → K is also a
homomorphism.

Proof.

(i) We have eH ∗H eH = eH , so φ(eH ∗ eH) = φ(eH) ∗G φ(eH) = φ(eH), so by the
cancellation law, φ(eH) = eG.

(ii) Consider φ(h) ∗G φ(h−1) = φ(h ∗H h−1) = φ(eH) = eG, by (i). So φ(h)∗G =
φ(h−1) = eG which is the defining property of an inverse, so φ(h−1) = φ(h)−1.

(iii) We have

(ψ ◦ φ)(a∗H) = ψ(φ(a ∗H b))

= ψ(φ(a) ∗G φ(b))

= ψ(φ(a)) ∗K ψ(φ(b))

= (ψ ◦ φ)(a) ∗K (ψ ◦ φ)(b),

so ψ ◦ φ is a homomorphism from H → K.

There is a special case of homomorphism, which we can use to define when two groups
‘are the same’.

Definition 1.28 (Isomorphism)

If a function φ : H → G is bijection, and φ is also a homomorphism from H → G,
then we say it is an isomorphism. We say two groups H,G are isomorphic,
written H ∼= G if there is an isomorphism from H → G.

Having an isomorphism between two groups can be thought of in a few ways. Because we
have a bijection function between the two groups, the groups must have the same order.
But also, because a homomorphism preserves the structure of the group, we must also
have the same group-structure within each group. Thus, when we have two isomorphic
groups, we can think of them as two different descriptions of the same group.

For example, we might claim that ‘there is exactly one group of order 2’, and what we
mean is that for any group of order 2, we can find an isomorphism to any other group
of order 2.

Example 1.29

Consider the group G = {1, i,−1,−i} with complex multiplication. Then G ∼= Z/4Z.
This is isomorphic with the isomorphism φ : G→ Z/4Z, where

φ(1) = 0,

φ(i) = 1,

φ(−1) = 2,

φ(−i) = 3

9
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The general case is true too, where the group H = {e2πik/n : 0 ≤ k ≤ n − 1} with
complex multiplication is isomorphic to Z/nZ.

Example 1.30 (Z’s subgroups are isomorphic)

Z ∼= nZ for n ∈ Z, as defined in Theorem 1.17.

It’s worth noting that because isomorphisms are bijective, we have the following result.

Proposition 1.31 (Inverses of isomorphisms are isomorphisms)

Let φ : H → G be an isomorphism. Then φ−1 : G→ H is also an isomorphism.

Proof Sketch. Check that φ−1 is a homomorphism.

§1.3.1 Kernels

When dealing with homomorphisms, say φ : H → G, it is useful to be able to think about
what elements in H our homomorphism ‘reaches’. Another useful idea is thinking about
what elements in H get mapped to the identity of G. To think about these questions,
we use concepts of a homomorphism’s image and kernel.

Definition 1.32 (Image)

Let φ : H → G be a homomorphism. We define the image of φ to be the set

img(φ) = {g ∈ G : g = φ(h) for some h ∈ H}.

Definition 1.33 (Kernel)

Let φ : H → G be a homomorphism. We define the kernel of φ to be the set

ker(φ) = {h ∈ H : φ(h) = eG}.

Indeed, while both of these are subsets of G and G respectively, they are also subgroups.

Proposition 1.34 (The Image and Kernel are Subgroups)

Let H and G be groups and let φ : H → G be a homomorphism. Then img(φ) is a
subgroup of G, and ker(φ) is a subgroup of H.

Proof. We consider the two sets separately.

1. We will show img(φ) ≤ G. For any x, y ∈ img(φ), let x = φ(x′) and y = φ(y′)
for x′, y′ ∈ H. Then

φ(x′y′
−1

) = φ(x′)φ(y′)−1 = xy−1 ∈ img(φ),

thus by the subgroup criterion img(φ) ≤ G.

10
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2. Now we show ker(φ) ≤ H. For x, y ∈ ker(φ), we have xy−1 ∈ ker(φ), as

φ(xy−1) = φ(x)φ(y−1) = φ(x)φ(y)−1 = eG,

so again using the subgroup criterion, ker(φ) ≤ H.

Example 1.35

φ : Z→ Z/nZ, where φ(k) = k (mod n) has img(φ) = Z/nZ and ker(φ) = nZ.

One of the beauties of introducing the kernel and image is that it allows us to easily see
whether a homomorphism is surjective or injective.

Proposition 1.36 (Surjectivity and Injectivity Criterion)

Let φ : H → G be a homomorphism.

(i) φ is surjective iff img(φ) = G.

(ii) φ is injective iff ker(φ) = {e}.

Proof. The first is true by definition, so we prove (ii). Suppose φ is injective, then as
we have φ(eH) = eG, so eH must be the only element sent to eG (by the definition
of injectivity), which implies that ker(φ) = {eH}. Now suppose that ker(φ) =
{eh}. Then if φ(a) = φ(b) for some a, b ∈ H, we have φ(ab−1) = φ(a)φ(b)−1 =
φ(b)φ(b)−1 = eG. However, this implies ab−1 = eH , so a = b, and φ is injective.

§1.3.2 Direct Products

How can we easily find a group that will have two given groups G,H as subgroups?
With the aim of getting the simplest construction possible, we can ‘stick them together’:
by defining a group operation on the product G ×H = {(g, h) : g ∈ G, h ∈ H} (a set
of ordered pairs).

Definition 1.37 (Direct Product)

The direct product of two groups G, H is the set G × H with the operation of
component-wise composition,

(g1, h1) ∗ (g2, h2) = (g1 ∗G g2, h1 ∗H h2).

Proposition 1.38

The direct product of two groups G and H is a group.

Proof Sketch. Check everything component-wise.

This group contains subgroups isomorphic to G and H, taking G×{eH} and {eG}×H.

A useful idea might be to try and recognize when a group is a direct product of two

11
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groups. This can be done with the following theorem.

Theorem 1.39 (Direct Product Theorem)

Let H,K ≤ G such that

(i) H ∩K = {e}

(ii) ∀h ∈ H and k ∈ K, we have hk = kh

(iii) ∀g ∈ G, there exists h ∈ H, k ∈ K such that g = hk

then G ∼= H ×K.

Proof. Consider the function φ : H ×K → G, where φ(h, k) = hk. φ is a homomor-
phism, as

φ((h1, k1) · (h2, k2)) = φ(h1h2, k1k2) = h1h2k1k2 = h1k1h2k2 = φ(h1, k1)φ(h2, k2).

φ is surjective by (ii), and now we will show φ is injective. Suppose that (h, k) ∈
kerφ. Then h = k−1, which implies that h, k ∈ H ∩ K by (i), and thus (h, k) =
(eH , eK). Thus kerφ = {(eH , eK)}, so φ is injective by the injectivty criterion.

We now have two ways to think about the direct product.

• If we have two groups H, K, we can form their direct product H ×K, and view
H and K as subgroups, namely H × {ek} and {eH} ×K.

• Given a group with subgroups H and K, which satisfy the conditions of the direct
product theorem, then we know that we are really dealing with H ×K.

Indeed these are just two descriptions of the same thing. The convention is often to refer
to H × {ek} and {eH} ×K as just H and K respectively.

§2 Important Groups

Now that we have seen some properties of groups, we will now consider some important
examples of groups.

§2.1 Cyclic Groups

Recall the notion of a generator from Definition 1.22.

Definition 2.1 (Cyclic)

If G is a group and there is some a ∈ G such that 〈a〉 = G, then we say G is cyclic.

Notably, if this is the case, for all b ∈ G, there exists k ∈ Z such that b = ak.

Example 2.2 (Examples of Cyclic Groups)

The following groups are all cyclic.

• (Z,+), which is generated by 〈1〉 or 〈−1〉.

12
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• (Z/nZ,+), generated by 〈1〉. Indeed, any k coprime to n will satisfy 〈k〉 =
Z/nZ.

• Let G = {e2πik/n : 0 ≤ k ≤ n− 1}. Then (G, ·) is generated by 〈e2πik/n〉 where
k is coprime to n.

These groups all have the same ‘feel’ to them, and indeed they are all isomorphic to the
following group.

Definition 2.3 (Cyclic Group Cn)

Let Cn be the group of elements {e = a0, a, a2, . . . , an−1}, where ak∗aj = ak+j (mod n).
Then (Cn, ∗) is the cyclic group of order n.

Theorem 2.4 (Cyclic Groups are Isomorphic)

A cyclic group G is isomorphic to Z or to Cn for some n ∈ N.

Proof. As G is cyclic, we have 〈b〉 = G, for some b ∈ G. Now let’s suppose that
there’s some n such that bn = e. Then define φ : Cn → G by φ(ak) = bk for
0 ≤ k ≤ n − 1. Then for any aj and ak ∈ Cn, we trivially have that φ(ajaj) =
φ(aj+k) = bj+k = bjbk = φ(aj)φ(ak). Thus φ is a homomorphism. φ is also
surjective as all elements in G can be written as bk, 0 ≤ k < n. It is also injective,
since φ(ak) = e =⇒ bk = e and so k = 0 (otherwise it contradicts the minimality
of n). So φ is an isomorphism, and G ∼= Cn.

If there is no such n, then we define φ : Z → G by φ(k) = bk. Then φ(k + m) =
bk+m = bkbm = φ(k)φ(m), so φ is a homomorphism. It is also clearly surjective.
Now suppose m ∈ ker(φ). Then φ(m) = bm = e, and φ(−m) = b−m = e, so if
m 6= 0, we would get a contradiction to the fact that there is no n > 0 with bn = e.
So m = 0, ker(φ) = {0} and φ must be an isomorphism. Thus G ∼= Z.

Because of this theorem, we will often just write Cn or Z for a cyclic group, regardless
of its description.

Proposition 2.5

Cyclic groups are abelian.

Proof Sketch. Check definitions.

The idea of there being some k such that gk = e for some g is a frequently occurring
concept.

Definition 2.6 (Order of an Element)

The order of an element g ∈ G is the smallest n ∈ N such that gn = e. This is
sometimes written ordG(g) = n. If there is no such n, we say g has infinite order.

13
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Theorem 2.7 (Fundamental Theorem of Orders)

Let G be a group, and let g ∈ G have finite order n. Then if gk = 1, we have n | k.

Proof. By the division algorithm, we can write k = qn + r uniquely with q, r ∈ Z
and 0 ≤ r < n. Then we have

gk = gqn+r = gqngr = (gn)qgr = gr = e.

But we defined n to be the smallest positive power for which gn = e, and as r < n,
we must have r = 0, otherwise we contradict the minimality of n. Thus k = qn,
that is, n | k.

§2.2 Dihedral Group

Group theory is frequently thought of as the ‘algebraic study of symmetry’. With this
rather vague claim in mind, we will now look at some groups related to geometry – the
symmetries of a regular n-gon. Let’s define what we mean by a ‘symmetry’ of a regular
polygon.

Definition 2.8

A symmetry of a regular n-gon is a transformation of the n-gon, so that when the
transformed n-gon is placed on the original n-gon, it exactly covers it.

Definition 2.9

The dihedral group D2n is the group of symmetries of a regular n-gon, where the
group operation is the composition of symmetries.

Clearly in this group, we will have n rotations (clockwise) of the angle 2πk
n , 0 ≤ k < n

(k = 0 gives the identity or ‘do nothing’ symmetry). There is also n reflections.

Odd Even

When n is odd, the n reflections are in axis through the center and each of the vertices.
For even n, we have n/2 reflections in axis through pairs of opposite vertices, and n/2
reflections in axes through pairs of opposite midpoints of edges.

From this you should count 2n elements, and we will now see that there is no other
elements.

Proposition 2.10

A regular n-gon has 2n symmetries.

14
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Proof. Let g ∈ D2n. Since g is a symmetry of our n-gon, it must send vertices to
vertices and edges to edges. So if v1 is a vertex who’s adjacent vertices are v2 and
vn and we have g(v1) = vi, then we must know g(v1) and g(vn), so we must know
exactly what g. Since there is n possibilities for where v1 is sent, and 2 possibilities
for where v2 is sent, there must be 2n elements in total.

Proposition 2.11

D2n is a group.

Proof. We have closure by ‘composition of symmetries are also symmetries’, identity
with the ‘do nothing’ symmetry and also inverses, as a rotation by 2πk

n has an inverse

of a 2π(n−k)
n rotation, and reflections are self inverse. We also have associativity, as

the composition of functions is associative. Thus D2n is a group.

It’s possible to generate every element in the group with just a single rotation and a
reflection. Let r be the rotation by 2π

n , and let s be the reflection about the axis through

v1 and the center. Then rk gives the rotation by 2πk
n and we can perform any reflection

by first rotating the n-gon, then applying the reflection, and then rotating back.

D2n is also not abelian, and indeed we have rs = sr−1.

Aside: Group Presentations

One way to write groups is with a presentation. This is an expression of the form

〈generators | relations between generators〉.

As an example, we can express the cyclic and dihedral groups using generators as follows

Cn = 〈a | an = e〉
D2n = 〈r, s | rn = e, s2 = e, rs = sr−1〉

You should be able to deduce all things that are true in the group from the relations
in the presentation. However, you should be aware that there are some ‘caveats’, for
example if we wrote down

〈r, s | rn = e, s2 = e〉 6= D2n.

It is, in general, quite hard to write down a presentation for a given group, or even to
determine the group from a given presentation. In this course, we will not look at the
‘mathematical tools’ which allow us to discuss presentations in a rigorous way.

Example 2.12

The group 〈
a, b, c | aba−1b−1 = b, bcb−1c−1 = c, cac−1a−1 = a

〉
= {e},

but the group〈
a, b, c, d | aba−1b−1 = b, b < b−1c−1 = c, cdc−1d1 = d, dad−1a1 = a

〉

15
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is the Higman group, and it is infinite. It should be clear from this example that
it is quite hard to determine a group from just its presentation.

§2.3 Permutation Groups

We are now going to discuss groups made up of permutations.

Definition 2.13 (Permutations)

Given a set X, a permutation of X is a bijective function σ : X → X. The set of
all permutations of X is denoted SymX.

Theorem 2.14

For any set X, SymX is a group with respect to composition.

Proof. We check the group axioms individually.

• Closure. The composition of two bijective functions from X → X is a bijective
function from X → X.

• Associativity. Composition of functions is associative.

• Identity. The identity function id(x) = x is bijective.

• Inverses. Every bijective function has a bijective inverse.

Thus SymX is a group.

Definition 2.15 (Symmetric Group)

If |X| = n, we write Sn for (the isomorphism class of) SymX. Sn is the symmetric
group on n elements.

It should be reasonably clear that |Sn| = n(n− 1) · · · 1 = n!. We will also normally use
X = {1, 2, 3, . . . , n} when we study Sn. When dealing with permutation groups, it’s
helpful to have some notation to express permutations. For a general σ ∈ Sn, we write

σ =

(
1 2 3 · · · n

σ(1) σ(2) σ(3) · · · σ(n)

)
.

Example 2.16

If we had some σ ∈ S3 such that σ(1) = 2, σ(2) = 3, and σ(3) = 1, we would write

σ =

(
1 2 3
2 3 1

)
.

A slightly better notation for when we have a permutation that ‘cycles’ some elements
a1, · · · ak ∈ {1, 2, . . . , n} and leaves the other elements unchanged, we can write

σ =
(
a1 a2 · · · ak

)
16
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which denotes the permutation mapping the elements as follows

a1 a2 a3 · · · ak

The cyclic nature of this notation also implies that the two permutations (a1 a2 · · · ak) =
(a2 a3 · · · ak a1). To define this notation slightly more formally, we have

(
a1 a2 · · · ak

)
(x) =


ai+1 if x = ai, (i < k)

a1 if x = ak

x if x 6∈ {a1, a2, . . . , ak}.

We distinguish between permutations that can be written directly in this form in the
following way.

Definition 2.17 (Cycles and Transpositions)

A permutation of the form σ = (a1 a2 · · · ak) is a k-cycle. If k = 2 then we call it
a transposition.

As cycles are permutations, we can compose them.

Example 2.18 (Composing Cycles)

If we consider the composition of two cycles (1 2 3 4)(3 2 4), this should be a
permutation in S4. Indeed we have

1 7−→ 1 7−→ 2

2 7−→ 4 7−→ 1

3 7−→ 2 7−→ 3

4 7−→ 3 7−→ 4

So we actually have that the composition of these cycles is also a cyclea, namely
(1 2 3 4)(3 2 4) = (1 2).

aThis is, in general, not the case

In the example above, the two cycles involved elements that were in both cycles. We
have a specific term for when this is not the case.

Definition 2.19 (Disjoint Cycles)

We say that two cycles are disjoint if no number appears in both cycles.

Lemma 2.20

Disjoint cycles commute.

17
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Proof. Let σ, τ ∈ Sn be two disjoint cycles. We want to show that στ = τσ, that
is, for any x ∈ {1, 2, . . . , n}, we have σ(τ(x)) = τ(σ(x)). We have two cases.

If x is in neither σ or τ , then σ(x) = τ(x) = x, and thus σ(τ(x)) = τ(σ(x)) = x.

Otherwise x is in exactly one of σ or τ . WLOG let it be in σ. Then σ(x) is also
in σ (and hence not τ), so τ(x) = x and τ(σ(x)) = σ(x). Thus σ(τ(x)) = σ(x), so
they commute.

Slightly more surprising is the following theorem

Theorem 2.21 (Writing Permutations with Cycles)

Any σ ∈ Sn can be written uniquelya as the composition of disjoint cycles.

aUp to the order of the cycles in the composition

Proof. First we show that any permutation can be written as the composition of
cycles. Take σ ∈ Sn, and consider 1, σ(1), σ2(1), . . . . Since {1, 2, . . . , n} is finite,
there must exist a > b such that σa(1) = σb(1). So σa−b(1) = 1. Now let k > 0 be
the smallest integer such that σk(1) = 1, which must exist by the previous argument.
Then for 0 ≤ l < m < k, if σm(1) = σl(1), then σm−l(1) = 1, which contradicts the
minimality of k. So all of 1, σ(1), σ2(1), . . . , σk(1) are distinct. This gives us our
first cycle (1 σ(1) σ2(1) σk−1(1)). We can repeat this process for the next number
in {1, 2, . . . , n} that has not already appeared, until eventually every element has
appeared. As σ is a bijection, no element can reappear.

We now show that this composition of cycles is unique up to the order of composi-
tion. Suppose we have two such decompositions

σ = (a1 · · · ak1)(ak1+i
· · · ak2) · · · (akm−1 · · · akm)

= (b1 · · · bk1)(bk1+i
· · · bk2) · · · (bkm−1 · · · bkm)

and each j ∈ {1, 2, . . . , n} appears exactly once in both. Then we have a1 =
bt for some t, and the other numbers in the cycle are uniquely determined by
σ(a1), σ

2(a1), . . . . So we have

(a1 · · · ak1)(· · · ) = (bt · · · )(· · · ),

since disjoint cycles commute and we can ‘cycle’ the elements in cycles. If we
continue this, we will find that all other cycles match too.

Now let’s consider an element σ ∈ Sn, and specifically we will look at the order of σ.

Definition 2.22

The set of cycle lengths of the disjoint cycle decomposition of a permutation σ is its
cycle type.

Example 2.23

(1 2 3)(5 6) has a cycle type of 3, 2 (or 2, 3).

18
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Theorem 2.24

The order of σ ∈ Sn is the least common multiple of the cycle lengths in its cycle
type.

Proof. First note that the order of a k-cycle is k. Suppose that σ = τ1τ2 · · · τr, where
τi is a cycle disjoint to the others. Then we have σm = τm1 τ

m
2 · · · τmr , since disjoint

cycles commute. Let each τi be a ki-cycle, then if σm = e, we have τm1 τ
m
2 · · · τmr = e,

and thus τmi = e for all im as they are disjoint. By the fundamental theorem of
orders, we must have ki | m, and thus m = lcm(k1, k2, . . . , kr) by minimality.

This theorem gives us an easy way to find the order of the elements in Sn: write them
in cycle notation.

Disjoint cycle notation is a useful way to express elements of Sn. Another useful notation
is writing elements as the product of transpositions.

Theorem 2.25 (Writing Permutations with Transpositions)

Let σ ∈ Sn. Then σ is a product of transpositions.

Proof. It suffices to show that we can write any cycle as a product of transpositions.
We observe that(

a1 a2 · · · ak
)

=
(
a1 a2

) (
a2 a3

)
· · ·
(
ak−1 ak

)
.

Unlike the disjoint cycle decomposition, this isn’t unique. For example, (1 2 3 4) =
(1 2)(2 3)(3 4) = (1 2)(2 3)(1 2)(3 4)(1 2). However, the pairity of the number of
transpositions is invariant among decompositions.

Theorem 2.26 (Parity of Transpositions)

Writing σ ∈ Sn as a product of transpositions in different ways, the number of
transpositions used is always either even or odd, that is, the pairity is invariant with
respect to σ.

Proof. Let’s write χ(σ) for the number of cycles in σ in its disjoint cycle decom-
position, including any 1-cycles. We will consider what happens to χ(σ) when we
multiply σ by a transposition τ = (c d).

• If a cycle does not contain c or d, it will not be affected.

• If c and d are in the same cycle, say (c a2 a3 · · · ak−1 d ak+1 · · · al), then
composing with (c d) gives (c ak+1 · · · al)(d a2 · · · ak−1). So χ(στ) =
χ(σ) + 1.

• If c and d are in different cycles, we have

(c a2 · · · ak)(d b2 · · · bl)(c d) = (c b2 · · · be d a2 · · · ak).
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So χ(στ) = χ(σ)− 1.

Thus for any σ and any transposition τ , χ(σ) ≡ χ(στ) + 1 (mod 2). We know that
χ(σ) is uniquely determined by σ, and if we write

σ = eτ1 · · · τk = eτ ′1 · · · τ ′l ,

we can use our result to get

χ(σ) ≡ χ(e) + k ≡ n+ k (mod 2)

χ(σ) ≡ χ(e) + l ≡ n+ l (mod 2),

and thus k ≡ l (mod 2).

Because of this invariance, we can distinguish between odd and even permutations.

Definition 2.27 (Sign of a Permutation)

Writing σ ∈ Sn as a product of transpositions σ = τ1τ2 · · · τk, the sign of σ is defined
as sign(σ) = (−1)k. If k is even, we say that σ is even, and if k is odd, we say that
σ is odd.

Proposition 2.28

For n ≥ 2, sign : Sn → {±1} is a surjective homomorphism.

Proof. We already know that sign is well defined, and if χ(σ) = k and χ(σ′) = l
for σ, σ′ ∈ Sn, then σσ′ can be written with k + l transpositions, so sign(σσ′) =
(−1)k+l = (−1)k(−1)l = sign(σ) sign(σ′), so sign is a homomorphism. It is also
surjective since sign(e) = 1 and sign(1 2) = −1.

There is an important group that comes from sign being a homomorphism.

Definition 2.29 (Alternating Group)

The alternating group An is the kernel of the homomorphism sign : Sn → {±1},
that is, it’s the group of even permutations.

§2.4 Möbius Groups

In the previous section we discussed many of the properties of permutations of a finite
set. In this section, we will look at some permutations of an infinite set. We will be
looking at functions C→ C - but since C has some intrinsic geometric properties (lines,
circles, etc) unlike {1, 2, . . . , n}, we will restrict ourselves to functions that interact well
with its geometry.

More precisely, we will be looking at functions of the form f : C→ C, where

f(z) =
az + b

cz + d
,
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with a, b, c, d ∈ C and ad− bc 6= 0. We have this condition because

f(z)− f(w) =
az + b

cz + d
− aw + b

cw + d
=

(ad− bc)(z − w)

(cw + d)(cz + d)
,

so if ad − bc = 0, we would have f(z) = f(w) and f would be constant. We want to
avoid this case as we wish to somehow form a group from these functions.

We also have another point which could cause some trouble, namely when z = −d/c,
and the denominator of f is 0. To fix this, we are going to introduce a new point ‘∞’
to C to form the extended complex plane , Ĉ = C ∪ {∞}. This can be visualized
through ‘stereographic projection’.

Consider a sphere with the complex plane cutting it at the equator.

C

We get a correspondence between points on the sphere and points in C by drawing a line
from the north pole to a point on the sphere, and seeing where it intersects the plane as
shown. The north pole corresponds to ∞ in Ĉ.

Definition 2.30 (Möbius Maps)

A Möbius map is a function f : Ĉ→ Ĉ of the form

f(z) =
az + b

cz + d
,

with a, b, c, d ∈ C and ad− bc 6= 0, and with f(−d/c) =∞ and

f(∞) =

{
a
c if c 6= 0

∞ if c = 0
.

Let’s look at some properties of Möbius maps.

Proposition 2.31

Möbius maps are bijections Ĉ→ Ĉ.

Proof Sketch. Define f−1(z) = dz−b
−cz+a , and check that f−1(f(z)) = z.

We now have the main result of this section.

Theorem 2.32 (Möbius Group)

The set of Möbius maps forms a group M under composition.
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Proof.

• Closure. Let f1(z) = a1z+b1
c1z+d1

and f2(z) = a2z+b2
c2z+d2

. Then

f2(f1(z)) =
(a1a2 + b2c1)z + (a2b1 + b2d1)

(c2a1 + d2c1)z + (c2b1 + d1d2)
=
a′z + b′

c′z + d′
,

and a′d′ − b′c′ 6= 0.

• Identity. Letting a = 1, b = 0, c = 0 and d = 1 gives f(z) = z.

• Inverses. For f(z) = az+b
cz+d , we have f−1(z) = dz−b

−cz+a .

Thus the set of Möbius maps form a group.

Remark. When working with Möbius maps in Ĉ, we will (somewhat improperly) use
the notation ‘ 1

∞ = 0’, ‘10 = ∞’ and ‘a∞c∞ = a
c ’ – but take care not to use this notation

accidentally in other circumstances.

This group has an interesting set of generators, which provide some insight as to what
Möbius maps do to the extended complex plane.

Theorem 2.33 (Generators of M)

Every Möbius map can be written as a composition of maps of the following forms:

1. f(z) = az, a 6= 0 – dilation/rotation;

2. f(z) = z + b – translation;

3. f(z) = 1
z – inversion;

Proof. Let f(z) = az+b
cz+d . Then if c 6= 0, f(z) is the composition

z 7−→ z +
d

c
7−→ 1

z + d
c

7−→ (−ad+ bc)c−2

z + d
c

7−→ a

c
+

(−ad+ bc)c−2

z + d
c

=
az + b

cz + d
.

If c = 0, then z 7→ a
dz 7→

a
dz + b

d .

§3 Lagrange’s Theorem

We will now begin to add to our algebraic toolkit by developing some results that will
shed some light on the internal structure of a group with respect to a subgroup. We will
begin by defining the notion of a coset, which will be used frequently throughout the
rest of the course.

Definition 3.1 (Coset)
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Let G be a group and H a subgroup of G. For any element g ∈ G, the symbol

gH = {gh : h ∈ H}

is the set of elements gh, where h ranges over elements of H. gH is a left coset of
H in G. We can also define Hg = {hg : h ∈ H} which is the right coset of H in
G.

The cosets of H in G are subsets of G, but they aren’t (typically) subgroups. You should
think of a coset as being a ‘translated copy’ of H that has the same number of elements
as H, but may or may not be a subgroup.

Example 3.2 (Cosets of 2Z)

Let H = 2Z ≤ Z. Then (using additive notation) the coset 0+2Z = {0+k : k ∈ 2Z}.
The coset 1 + 2Z = {1 + k : k ∈ 2Z} is the set of all odd integers.

These are the only cosets we can obtain with this subgroup, as if we fix some n ∈ Z,
then n+ 2Z will be in 2Z if n is even, and in 1 + 2Z if n is odd.

Example 3.3

Let H = {e, (1 2)} ≤ S3 = {e, (1 2), (1 3), (2 3), (1 2 3), (1 3 2)}.

Considering the cosets of H, we have

eH = {e, (1 2)} = H

(1 2)H = {(1 2), e} = H

(1 3)H = {(1 3), (1 3)(1 2 3)}
(2 3)H = {(2 3), (1 3 2)}

(1 2 3)H = {(1 2 3), (1 3)} = (1 3)H

(1 3 2)H = {(1 3 2), (2 3)} = (2 3)H,

and so all together we have 3 distinct cosets.

From the last example, there are some notable details:

• Whenever we choose the identity element, we get the subgroup back: eH = H.

• Also, whenever we choose an element of H, we get H back: hH = H for h ∈ H.

• The cosets of a subgroup are always the same size as that subgroup.

• Every element in G appears in at least one coset, that is,
⋃
g∈G

gH = G.

This leads up to Lagrange’s Theorem.

Theorem 3.4 (Lagrange’s Theorem)

Let H ≤ G be a subset of a finite group G. Then

(i) |H| = |gH| for all g ∈ G;
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(ii) For g1, g2 ∈ G, either g1H = g2H or g1 ∩ g2H = ∅;

(iii) G =
⋃
g∈G

gH

In particular, defining the index of H in G as |G : H| to be the number of distinct
cosets of H in G, then |G| = |G : H| · |H|.

Proof.

(i) The function H → gH, g → gh defined a bijection between H and gH.

(ii) Suppose g1H∩g2H 6= ∅. Then there exists g ∈ g1H∩g2H. So g = g1h1 = g2h2
for some h1, h2 ∈ H. Then g1 = g2h2h

−1
1 , so for any h ∈ H, we have g1h =

g2h2h
−1
1 h ∈ g2H, so g1H ⊆ g2H. Similarity, g2H ⊆ g1H, thus g2H = g1H.

(iii) Given some g ∈ G, then g ∈ gH (since e ∈ H). Thus G ⊆
⋃
g∈G gH, and

certainly
⋃
gH ⊆ G, thus G =

⋃
g∈G gH.

Finally, |G| is partitioned into the number of distinct cosets of H, thus |G| = |G :
H| · |G|.

What this theorem is saying is ‘cosets pave the group’, as all the paving stones (the
cosets) are the same size, they don’t overlap, and they cover the whole group.

Here, we used left cosets but we could have used right cosets and would have gotten an
analogous result. In general, the left and right cosets are not equal: gH 6= Hg. When
this is true, it is an interesting property of a subgroup, that we will look at later in this
chapter.

So left and right cosets are not generally, the same but what about two left cosets?

Proposition 3.5

If H is a subgroup of a group G, and g1, g2 ∈ G, then

g1H = g2H ⇐⇒ g−11 g2 ∈ H.

Proof Sketch. Follows from definitions.

In particular, taking g′ ∈ gH gives g′H = gH.

Let us take an element from each of the distinct cosets of a subgroup

g1, g2, . . . , g|G:H|,

then

G =

|G:H|⋃
i=1

giH,

where the union is the union of disjoint sets. The elements gi are called coset repre-
sentatives of H in G.

We can use Lagrange’s theorem to immediately derive some useful results.
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Corollary 3.6 (Order of an Element Divides Order of a Group)

Let G be a finite group, and let g ∈ G. Then ordG(g) | |G|.

Proof. Notice that the subgroup 〈g〉 is a cyclic group of order ordG(g). Then |〈g〉| |
|G| by Lagrange’s theorem.

Corollary 3.7

Let G be a finite group, and g ∈ G. Then g|G| = e.

Proof. The order of g divides |G|, and thus |G| = ordG(g) · k for some k. Thus
g|G| = gordG(g)·k = ek = e.

Corollary 3.8

Groups of prime order are cyclic, and are generated by any non-identity element.

Proof. Let’s suppose we have a group G with |G| = p, for a prime p. Take g ∈ G.
Then |〈g〉| | |G| by Lagrange. So |〈g〉| = 1 or p. If g 6= e, then |〈g〉| 6= 1, so it must
be p. So 〈g〉 = G.

We will now see how a theorem from number theory can be proved using Lagrange’s
theorem. First, recall that (Z/nZ)× is a group made up of the elements of {1, 2, . . . n−1}
that have an inverse. We also have |(Z/nZ)×| = φ(n), which you should recall from
‘Numbers and Sets’. We will now prove the following theorem.

Theorem 3.9 (Fermat-Euler Theorem)

Let n ≥ 1, and a ∈ Z coprime to n. Then

aφ(n) ≡ 1 (mod n).

Proof Sketch. Note that a ∈ (Z/nZ)× which is a group, then aφ(n) = a|(Z/nZ)
×| = e,

by the corollary we proved earlier.

§3.1 Exploring Group Using Lagrange

Recall that we have |G| = |G : H| · |H|, so based on the order of G, we can deduce the
possible orders of a subgroup H.

Remark. Just because some k | |G|, that doesn’t imply that there is some subgroup of
order k.

Example 3.10 (Subgroups of D10)

Consider the group D10. The order of this group is 10, so its subgroups must be of
order 1, 2, 5 and 10 by Lagrange’s theorem. 1 does occur with the subgroup {e}.
Also 10 occurs with the subgroup D10.
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If we want a subgroup of order 2, we need to have the identity e and some other
element of order 2. There are 5 such elements in D10 (reflections), which gives us 5
subgroups of order 2.

If we want a subgroup of order 5, it must be cyclic by Corollary 3.8. We have 4
elements of order 5 in D10.

These are all of the subgroups of D10.

We will study groups of small order in this course, and we can already classify groups of
order ≤ 5 using Lagrange.

• If |G| = 1, then G = {e}.

• If |G| = 2, 3, or 5, then G is the cyclic group C2, C3, and C5 respectively, by
Corollary 3.8.

• If |G| = 4, we have two possibilities, as we will see in the following proposition.

Proposition 3.11 (Groups of Order 4)

If |G| = 4, then G ∼= C4 or G ∼= C2 × C2.

Proof. By Lagrange, the possible orders of elements of G are 1, 2 or 4. If there is an
element of order 4, say g, then 〈g〉 = G ∼= C4. If there is no element of order 4, then
all non-identity elements have order 2. We proved in Example Sheet 1 (apologies
if you have not done this question) that G is abelian. We can take two distinct
elements of order 2, say b, c. Then 〈b〉 ∩ 〈c〉 = {e, b} ∩ {e, c} = {e}. Also everything
commutes as G is abelian, and if we have bc, then bc 6= b and bc 6= c. Also bc 6= e
as otherwise b = c−1 = c. Thus bc is the fourth element of the group. Thus by the
direct product theorem, G = 〈b〉 × 〈c〉 ∼= C2 × C2.

To study groups of order 6 and greater, we are going to need more algebraic machinery.

§4 Quotients of Groups

Using the direct product, we have a notion of ‘multiplying’ groups together. We will
now think about how and when it makes sense to ‘divide’ one group by another.

§4.1 Normal Subgroups

We will also be interested in subgroups for which the left and right cosets coincide.

Definition 4.1 (Normal Subgroups)

A subgroup N ≤ L is normal if ∀g ∈ G, gN = Ng. We write N E G.

Proposition 4.2 (Equivalent Conditions for Normal Subgroups)

The following are all equivalent conditions for a subgroup being normal.

(i) ∀g ∈ G, gN = Ng.
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(ii) ∀g ∈ G, and ∀n ∈ N , g−1ng ∈ N (or gng−1 ∈ N).

(iii) ∀g ∈ G, g−1Ng = N .

Proof Sketch. Follows from definitions.

We will use all of these conditions interchangeably.

Example 4.3

The following are all normal subgroups

(i) nZ E Z, as for all a ∈ Z, we have a+ nZ = {a+ nk : k ∈ Z} = {nk + a : k ∈
Z} = nZ + a.

(ii) A3 E S3, where A3 = {e, (1 2 3), (1 3 2)}. Clearly eA3 = A3e, and (1 2 3)A3 =
A3(1 2 3), (1 3 2)A3 = A3(1 3 2). Also (1 2)A3 = {(1 2), (2 3), (1 3)} =
A3(1 2), and similarily for (1 3) and (2 3).

Proposition 4.4

Any subgroup of an abelian group is normal.

Proof. For any subgroup N , if G is abelian, we have g−1ng = n ∈ N , so N is
normal.

Proposition 4.5

Any subgroup of index 2 is normal.

Proof. If H ≤ G is a subgroup with |G : H| = 2, then there are only two cosets.
H = eH = He is one of the cosets, and since cosets are disjoint (by Lagrange), the
other coset has be G\H both for left and right cosets. So H is normal.

These propositions give us two rich sources of normal subgroups, and we will now see
something that gives all possible normal subgroup.

Proposition 4.6

If φ : G→ H is a homomorphism, then kerφ E G.

Proof. First we note that the kernel of a homomorphism is a subgroup. Then given
some k ∈ kerφ, g ∈ G, then

φ(g−1kg) = φ(g)−1φ(k)φ(g) = φ(g)−1eφ(g) = e,

so g−1kg ∈ kerφ, for all g ∈ G and k ∈ kerφ.

Later on, we will see that normal subgroups are exactly kernels of homomorphisms.
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Example 4.7

The following are all normal subgroups.

1. SL2(R) E GL2(R), as SL2(R) = ker(det).

2. An E Sn as An is the kernel of the sign homomorphism. Also |Sn : An| = 2.

With the notion of normal subgroups, we can continue to classify groups of small order.

Proposition 4.8 (Groups of Order 6)

If |G| = 6, then G ∼= C6 or D6.

Proof. By Lagrange, possible element orders are 1 (for e), 2, 3 and 6. If there is an
element of order 6, then G ∼= C6. If there is no such element, then by one of the
questions on the example sheet (again sorry), then there is an element of order 3,
say r, as otherwise our group would have an order that is a power of 2. So |〈r〉| = 3
and by Lagrange, |G| = 6 = |G : 〈r〉| · |〈r〉| = 3|G : 〈r〉|. So 〈r〉 E G.

There must also be an element s of order 2, since |G| is even (again see the example
sheet). We can now consider what s−1rs ∈ 〈r〉 can be.

If s−1rs = e, then r = e, which is not the case. If s−1rs = r, then sr = rs, which
implies that sr has order 6, which we assumed there wasn’t. Thus we must have
s−1rs = r2, so G = 〈r, s〉 with r3 = s2 = e, and sr = r2s = r−1s, which is how we
define D6.

§4.2 Quotients

We said that the goal of this chapter was to develop the notion of ‘dividing’ groups, but
what does that actually mean? As in, why would we attempt to make sense of such
an idea? In a previous chapter, we looked at how to recognize when there was some
surjective homomorphism from a group G to another group H. We are now going to
take this idea further, to see how we can construct all groups H such that there is a
surjective homormorphism from a given group G to H. Using this, we will be able to
select exactly the properties of G that we wish to preserve in H, and which we want to
ignore. In the previous section we developed the idea of normal subgroups. This will be
a key aspect in developing this idea.

We are first going to define how we can ‘multiply’ cosets.

Definition 4.9 (Coset Multiplication)

Let G be a group with a subgroup H. We define the multiplication of the coset of
a and of b to be the coset of ab, that is,

aH · bH = (ab)H.

There are some inherent problems with this definition. For one, it’s not immediately
clear that such a product is well defined. If we had some cosets aH = a′H and bH = b′H,
it is not necessarily the case that their product will be equal, that is

aH = a′H, bH = b′H does not imply (ab)H = (a′b′)H.
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So when is such a product well defined? It turns out that the required condition is that
H must be normal.

Proposition 4.10 (Coset Multiplication for Normal Subgroups)

Let H be a normal subgroup of G. Then if aH = a′H and bH = b′H, we have
(ab)H = (a′b′)H.

Proof. If aH = a′H, then a ∈ a′H, so a = a′h1 for some h1 ∈ H. Also if bH = b′H,
we have b = b′h2 for h2 ∈ H. Thus ab = a′h1b

′h2. Then as H is normal, h1b
′ = b′h3

for some h3 ∈ H. Then ab = a′b′h3h2, and as h3h2 ∈ H, this must be in (a′b′)H.

We now get to the central result of this section.

Proposition 4.11

Let N E G. The set of cosets of N in G forms a group under coset multiplication.

Proof. This operation is well defined by the proposition above. We now check the
group axioms.

• Closure. If g1N and g2N are cosets, so is g1g2N .

• Identity. eN = N .

• Associativity. This follows from the associativity of G: (g1N · g2N) · g3N =
(g1g2N) · g3N = ((g1g2)g3)N = (g1(g2g3))N = g1N · (g2N · g3N).

Definition 4.12 (Quotient Group)

If N E G, then G/N is the group of cosets of N in G is called the quotient group
of G by N .

Example 4.13 (Quotient Groups)

(i) The group of integers modulo n is the quotient group of nZ in Z is a group,
Z/nZ.

(ii) As A3 E S3, we have the quotient group S3/A3, which has 2 elements since
|S3 : A3| = 2. Thus S3/A3

∼= C2.

(iii) If G = H × K, then both H and K are normal in G, and G/H ∼= K and
G/K ∼= H.

(iv) If N = 〈r2〉 ≤ D8, then it is a normal subgroup, and D8/N ∼= C2 × C2.

Remark. In general, quotients are not subgroups. In general, they may not even be
isomorphic to a subgroup in a group.

Theorem 4.14
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Given N E G, the function π : G → G/N where π(g) = gN is a surjective homo-
morphism called the quotient map, and kerπ = N .

Proof. First we prove that π is a homomorphism. We have π(g)π(h) = gN · hN =
ghN = π(gh). It’s clearly injective, and also π(g) = gN = N ⇐⇒ g ∈ N . Thus
kerπ = N .

This is a key result: normal subgroups are exactly kernels of homomorphisms.

§4.3 The Isomorphism Theorems

Using the idea of quotient groups, we can prove the following theorem.

Theorem 4.15 (First Isomorphism Theorem)

Let φ : G→ H be a homomorphism. Then G/ kerφ ∼= img φ.

Proof. Define φ : G/ kerφ → img φ via g kerφ → φ(g). This is well defined, as if
g1 kerφ = g2 kerφ, then g1 = g2k for some k ∈ kerφ. So φ(g1 kerφ) = φ(g1) =
φ(g2k) = φ(g2)φ(k) = φ(g2) = φ(g2 kerφ).

We can show that φ is a homomorphism, as

φ(g kerφ · g′ kerφ) = φ(gg′ kerφ) = φ(gg′) = φ(g)φ(g′) = φ(g kerφ) · φ(g′ kerφ).

We now show that φ is also an isomorphism, by showing it is a bijection. First φ is
surjective as all elements in img φ are of the form φ(g) for some g ∈ G. It is also
injective, as if φ(g kerφ) = e = φ(g) in img φ, then g ∈ kerφ, so g kerφ = kerφ.

Example 4.16

(i) det : GL2(R)→ R× has img det = R×, ker det = SL2(R), so GL2(R)/ SL2(R) ∼=
R×.

(ii) Consider the map φ : R→ C×, where φ(r) = e2πir. This is a homomorphism,
and its image is the circle of radius 1 in C (which is S1), and the kernel is Z.
Then by the first isomorphism theorem, we have R/Z ∼= S1.

Quotient groups also have an interesting subgroup structure.

Theorem 4.17 (Correspondence Theorem)

Let N E G, then the subgroups of G/N are in bijective correspondence with sub-
groups of G containing N .

Proof. If we have some N ≤ M ≤ G, with N E G, then N E M , and clearly
M/N ≤ G/N . Conversely, for every subgroup H ≤ G/N , we can take the preimage
of H under the quotient map φG → G/N , that is, φ−1(H) = {g ∈ G : gN ∈ G}.
We can check that this is a subgroup of G by checking the group axioms. We
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have closure by as g1, g2 ∈ π−1(H), then g1g2N = g1N · g2N , so g1g2N ∈ H, and
we inherit identity, inverses and associativity from the parent group. Now π−1(H)
contains N , since ∀n ∈ N , nN = N ∈ H (it’s the identity coset). We can check
that for N ≤ M ≤ G, pi−1(M/N) = M , and for H ≤ G/n, π−1(H)/N = H. So
this correspondence is bijective.

This correspondence preserves lots of structure, for example indices, normality, contain-
ment.

Example 4.18

Suppose C4 = {e, a, a2, a3} and C2 = {e, b}. Consider the group C4 × C2. Its
subgroups are as follows.

C4
∼= 〈(a, e)〉

C4 × C2

C2
∼= 〈
(
a2, e

)
〉

C4
∼= 〈(a, b)〉

〈(e, e)〉

C2
∼= 〈
(
a2, b

)
〉 = N

C2
∼= 〈(e, b)〉

C2 × C2
∼= 〈
(
a2, e

)
, (e, b)〉

We will define N = 〈(a2, b)〉, which is normal because our group is abelian. Then if
we look at C4 ×C2/N , then the correspondence theorem tells us that its subgroups
are the intermediate subgroups between C4×C2 and N , and thus it has the following
subgroup lattice.

C4 × C2/N C2
∼= {N, (e, b)N} {N}

This also shows us that because C4 × C2/N has order 4 by Lagrange, it must be
isomorphic to C4 (as otherwise it would be isomorphic to C2×C2, which would have
a different subgroup lattice).

Now, if we had some subgroup H ≤ G that didn’t contain N E G, we can still make a
normal subgroup of H by intersecting. This is the second isomorphism theorem.

Theorem 4.19 (Second Isomorphism Theorem)

Let H ≤ G and N E G. Then H ∩N E H and H/(H ∩N) ∼= HN/N .

Proof Sketch. When N E G and H ≤ G, then HN = {hn : h ∈ H,n ∈ N} is a
subgroup of H, and HN = 〈H,N〉 (the smallest subgroups of G containing H and
N). Then consider the function φ : H → HN/N , with φ(h) = hN . We can check
this is a well defined, surjective homomorphism, and its kernel is N ∩ H, and we
can apply the first isomorphism to get H/(N ∩H) ∼= HN/N ≤ G/N .
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We mentioned previously that normality is preserved. We can even say something about
quotients.

Theorem 4.20 (Third Isomorphism Theorem)

Let N ≤ M ≤ G such that N E G and M E G. Then M/N E G/N and
(G/N)/(M/N) ∼= G/M .

Proof. We define φ : G/N → G/M by φ(gN) = gM . φ is well-defined since N ≤M ,
and it’s a surjective homomorphism. Its kernel is M/N , and thus by the first
isomorphism theorem, (G/N)/(M/N) ∼= G/M .

Let’s have a look at some examples of the isomorphism theorems.

Example 4.21

Consider the group Z, and define H = 3Z and N = 5Z. Note that Then by the
second isomorphism theorem as , H/(H ∩N) ∼= HN/N ∼= Z/5Z, as 〈H,N〉 = Z by
Bezout’s lemma.

§4.4 Simple Groups

We will finish this chapter with the introduction of simple groups.

Definition 4.22 (Simple Groups)

A group G is simple if its only normal subgroups are {e} and G.

Example 4.23 (Examples of Simple Groups)

The following are simple groups:

• Cp for a prime p.

• A5 (we will prove this later on).

Finite simple groups are important as they can be thought of as the ‘building blocks’ of
all finite groups. If we have some finite group with a normal subgroup, we can take the
quotient by that normal subgroup, and you would obtain two objects (the quotient and
the normal subgroup) that are smaller than the original group. These objects can help
you understand the groups more, but simple groups can’t be decomposed further.

Recently, the classification of all finite simple groups was completed, and you can find a
large book with all finite simple groups in it!

§5 Group Actions

The next aspect of group theory we shall look at is group actions, where we study how
groups interact with other objects. This isn’t such a foreign concept – if you consider
the examples of groups that we have looked at previously, we have in many cases been
able to identify elements by their effect on some set. For example, we determined the
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elements of Sn by how it permuted elements of the set {1, 2, . . . , n}, and we defined D2n

based on the symmetries of an n-gon.

Of course, using the group axioms we can somewhat forget that these were ever groups
that acted on certain objects, but by introducing these objects that groups can act upon
adds a certain richness to the subject.

Definition 5.1 (Group Action)

Let G be a group, and let X be a set. An action of G on X is a function α :
G×X → X written α(g, x) = αg(x), satisfying

• αg(x) ∈ X for all g ∈ G and x ∈ X.

• αe(x) = x for all x ∈ X.

• αg ◦ αh(x) = αgh(x) for any g, h ∈ G and x ∈ X.

Example 5.2

The following are all examples of groups that act on various sets.

(i) The group Sn acts on X by permutation.

(ii) The group D2n acts on the vertices of a regular n-gon, and if we label these
vertices 1, 2, . . . , n, we get an action on the set {1, 2, . . . , n}.

(iii) The symmetries of a cube act on a set of vertices, a set of edges, a set of faces,
and a set of pairs of opposite faces.

Remark. These examples show us that more than one group can act on a given set, for
example in (i) and (ii). A group can also act on many sets.

Lemma 5.3

For all g ∈ G and an action αg : X → X, the map x 7→ αg(x) is a bijection.

Proof. We have αg(αg−1(x)) = αgg−1(x) = αe(x) = x for all x ∈ X, and similarly,
αg−1(αg(x)) = x for all x ∈ X. Hence αg ◦ αg−1 and αg−1 ◦ αg are the identity
functions, so αg is a bijection.

We can also define actions by linking G to Sym(X) in the following way.

Proposition 5.4

Let G be a group, and X be a set. Then α : G×X → X is an action if and only if
the function ρ : G→ Sym(X) where ρ(g) = α(g) is a homomorphism.

Proof. If α is an action, then by Lemma 5.3, αg is a bijection from X → X, so
αg ∈ Sym(X). Now ρ(gh) = αgh and for all x ∈ X, αgh(x) = αg ◦ αh(x), so
ρ(gh) = αgh = αg ◦ αh = ρ(g)ρ(h), so ρ is a homomorphism.

Otherwise, if we have some homomorphism ρ : G → Sym(X), we can define α :
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G×X → X by α(g, x) = αg(x) = ρ(g)(x). Then α is an action. This is true because
ρ(g) ∈ Sym(X), so ρ(g)(x) = αg(x) ∈ X, and ρ(e) is the identity in Sym(X) which
implies ρ(e)(x) = x, and finally, ρ(gh) = ρ(g)ρ(h) implies that αgh(x) = αg ◦ αg(x)
for all x ∈ X.

We can make the notation slightly easier. When we write αg : X → X, we can really
think of g as being a function on x, and we can write g(x) instead.

With the above proposition in mind, we can define the kernel of an action.

Definition 5.5

The kernel of an action α : G × X → X is the kernel of the homomorphism
ρ : G→ Sym(x) (as above).

These are all of the elements of G that act as the identity of Sym(X), that is, they do
nothing to every x ∈ X. Note that by the first isomorphism theorem, this also implies
that G/ ker ρ ∼= img ρ ≤ Sym(X), and thus if ker ρ = {e}, then G ≤ Sym(X).

Example 5.6

(i) D2n acting on {1, . . . , n} (the labelled vertices on an n-gon) has ker ρ = {e},
as every non-trivial element of D2n moves at least one vertex. Thus D2n ≤ Sn.

(ii) Let G be the symmetries of a cube, and consider X to be the set of unordered
pairs of opposite faces. Then |X| = 3. So we get a homomorphism ρ : G→ S3.
Clearly there are symmetries of the cube that realize all of the permutation of
X, so ρ is surjective. So, G/ kerφ ∼= S3.

Definition 5.7 (Faithful Actions)

An action of G on X is called faithful if ker ρ = {e}.

§5.1 Orbits and Stabilisers

Consider the following two questions: for a group G acting on a set X, what elements
of X we can ‘get to’ from a certain x ∈ X using the action of G? Also, which group
elements leave a given x ∈ X unchanged?

x ∈ X

g1(x)

g2(x)

g3(x)

...
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Definition 5.8 (Orbit)

Let G act on X, and let x ∈ X. The orbit of x is

Orb(x) = {g(x) : g ∈ G} ⊆ X.

Definition 5.9 (Stabilizer)

The stabilizer of x is

Stab(x) = {g ∈ G : g(x) = x} ⊆ G.

We say that an action of transitive if Orb(x) = X, that is, if we can get to any element
from any other element.

Example 5.10

For G = S3 = {e, (1 2), (2 3), (1 3), (1 2 3), (1 3 2)} ≤ S4. G acts on {1, 2, 3, 4},
and we have Orb(1) = Orb(2) = Orb(3) = {1, 2, 3}, but Orb(4) = {4}. Also
Stab(1) = {e, (2 3)}, Stab(2) = {e, (1 3)}, Stab(3) = {e, (1 2)} and Stab(4) = G.

Lemma 5.11

For any x ∈ X, Stab(x) is a subgroup of G.

Proof. We check the group axioms.

• Closure. If g, h ∈ Stab(x), then (gh)(x) = g(h(x)) = g(x) = x, so gh ∈
Stab(x).

• Identity. e(x) = x, so e ∈ Stab(x).

• Inverses. If g ∈ Stab(x) then g(x) = x so x = g−1(x), and g−1 ∈ Stab(x).

Now recall that a partition of a set X is a set of subsets of X such that each x ∈ X
belongs to exactly one subset in the partition.

Lemma 5.12

Let G act on X. Then the orbits partition X.

Proof. Firstly, for any x ∈ X, x ∈ Orb(x). Secondly, if z ∈ Orb(x) ∩ Orb(y), then
there exists g1 ∈ G such that g1(x) = z, and there exists g2 ∈ G such that g2(y) = z,
that is, y = g−12 (z). So y = g−12 g1(x), and thus for any g ∈ G, g(y) = (gg−12 g1)(x) ∈
Orb(x). So Orb(y) ⊆ Orb(x). Similarly, Orb(x) ⊆ Orb(y). Thus orbits are either
disjoint or equal.

Recall the proof that any permutation could be written as the product of disjoint cycles.
What we were really doing was finding the orbits in {1, 2, . . . , n} under 〈σ〉, which are
disjoint.
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Remark. Note that unlike cosets, the sizes of orbits can be different.

When we have an action, we can say even more about the structure of our group.

Theorem 5.13 (Orbit-Stabiliser Theorem)

Let a finite group G act on X. Then for any x ∈ X,

|G| = |Orb(x)| · | Stab(x)|.

Proof. Note that g(x) = h(x) occurs if and only if h−1g(x) = x, that is, when
h−1g ∈ Stab(x). Then this is true iff the cosets g Stab(x) = hStab(x). Rephrasing,
distinct points in the orbit of x are in bijection with distinct cosets of Stab(x). So
|Orb(x)| = |G : Stab(x)| = |G|/|Stab(x)| by Lagrange, and the result follows.

In particular, notice that all elements in a given coset g Stab(x) do the same thing
to x as g, as an element of this coset g Stab(x) has the form gh, h ∈ Stab(x), so
gh(x) = g(h(x)) = g(x).

We can use the orbit-stabiliser theorem to investigate groups further. For example, we
already know |D2n| = 2n, but we can also show this by the orbit-stabiliser theorem. D2n

acts transitively on {1, . . . , n}, so |Orb(1)| = n, and Stab(1) = {e, s}, as the first vertex
is fixed by one reflection and the identity. Thus |D2n| = |Orb(1)| · | Stab(1)| = n ·2 = 2n.

§5.1.1 Symmetries of the Tetrahedron

To see the power of using Orbits and Stabilisers, we are going to consider two more
involved examples, beginning with the symmetries of a tetrahedron.

1

2

3

4

The tetrahedron has

• 4 faces (all regular triangles),

• 4 vertices, labelled {1, 2, 3, 4},

• 6 edges.

So let G be the group of symmetries of the tetrahedron. Clearly G acts transitively on
the vertices, and there’s no non-identity symmetry that fixes all of the vertices. So we
have an injective homomorphism ρ : G→ S4.

We can consider the orbit and stabiliser for a vertex of the tetrahedron, say 1. For
orbits, there is a symmetry that allows us to get from 1 to any other vertex, thus
Orb(1) = {1, 2, 3, 4}. Then, the symmetries that leave the vertex 1 fixed are going to
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be the symmetries of the bottom face (the 2, 3, 4 triangle). Thus Stab(1) ∼= D6, the
symmetries of a triangle.

With this information, then orbit stabiliser tells us that

|G| = |Orb(1)| · | Stab(1)| = 4 · 6 = 24,

and as |S4| = 4! = 24, and as G ≤ S4, we must have G = S4. So just by considering the
symmetries relating to one vertex, we were able to deduce the order of the group G, and
also find a group that it’s isomorphic to!

We can also consider a group G+ of the rotations in G. Then in G+, Orb(1) = {1, 2, 3, 4}
as we can only use rotations, and then Stab(1) is going to be the rotations of the bottom
triangle, thus Stab(1) ∼= C3. Then again by the orbit stabiliser theorem,

|G+| = |Orb(1)| · | Stab(1)| = 4 · 3 = 12,

and as G+ ≤ G ∼= S4, we must have G+ = A4! Indeed, we can check that G+ is made
up of all of the even permutations of the four vertices, that is, all of the 3-cycles and the
elements of the form (1 2)(3 4).

1

2

3

4

1

2

3

4

(1 3 4) (1 2)(3 4)

§5.1.2 Symmetries of the Cube

We are now going to look at the symmetries of a cube in a similar way.

1 2

34

5 6

78

We have

• 6 faces (all square),

• 8 vertices, labelled {1, 2, 3, 4, 5, 6, 7, 8},

• 12 edges.
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Let G be the group of symmetries of the cube. In this example, we will find that it is
interesting to consider either acting on the vertices or on the faces.

When G acts on the vertices of the cube, we can find the size of the orbit and stabiliser
of a vertex geometrically. G is transitive, hence |Orb(1)| = 8. Then the elements that
stabilize the vertex 1 are going to be the identity, the rotations about an axis through
1, and the reflections about planes through 1 and an outgoing edge. These are shown
below.

1 2

34

5 6

78

1 2

34

5 6

78

So |Stab(1)| = 6. Then by the orbit-stabiliser theorem,

|G| = |Orb(1)| · | Stab(1)| = 8 · 6 = 48.

We will determine this group completely later.

Now let’s look at the group of rotations, G+, acting on the 8 vertices. We have |Orb(1)| =
8 as before, but the stabilisers of 1 are only going to be the rotations, so |Stab(1)| = 3.
Thus

|G+| = |Orb(1)| · | Stab(1)| = 8 · 3 = 24.

Now if we let G+ act on the four diagonals of the cube, giving ρ : G+ → S4. We will
have all 4-cycles in img ρ, and also all transpositions2. So we have (1 2) and (1 2 3 4),
but we found previously (in Example Sheet 2) that this generates S4, so ρ is surjective.
Then as |G+| = 24 = |S4|, so we must have G+ ∼= S4.

§5.1.3 Platonic Solids

The last two shapes were two of the five platonic solids.

Definition 5.14 (Platonic Solid)

A platonic solid is a solid shape in R3 that has polygonal faces, straight edges and
vertices such that the group of the shape’s symmetries acts transitively on triples of
the form (vertex, incident edge, incident face).

So these solids are particularly symmetric. The other platonic solids are the octohedron,
dodecahedron and icosahedron.

2If you don’t see why, I encourage you to draw a cube with a diagonal elongated, and see what the
rotations do to it.
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There are also links between the symmetries of these shapes - the cube and octahedron
are dual, that is, they can be inscribed in each other with vertices in the middle of faces.
The icosahedron and dodecahedron are also duel. In fact, this duel property implies that
they have the same symmetry groups. So there is only 3 distinct symmetry groups of
platonic solids.

§5.2 Cauchy’s Theorem

We are now going to see how group actions can be used to prove a beautiful theorem.
Back in Example Sheet 1, we had the following problem.

Problem. Let G be a group of even order. Show that G contains an element of order
two.

It is not true in general that if k | |G|, then there is an element of order k – but it is
true for primes. This result is Cauchy’s theorem.

Theorem 5.15 (Cauchy’s Theorem)

Let G be a finite group, and let p be a prime such that p | |G|. Then G has an
element of order p.

Proof. Consider the group Gp = G×G× · · · ×G︸ ︷︷ ︸
p times

, that is, the group formed of p-

tuples of elements of G, with component wise composition. Consider the subset
X ⊆ G,

X = {(g1, . . . , gp) ∈ Gp : g1g2 · · · gp = e},

Informally, ‘p-tuples multiplying to e’. Note that g ∈ G has order p if and only if
(g, . . . , g) ∈ X where g is not the identity.

Now take a cyclic group Cp = 〈a〉, and let Cp act on X by ‘cycling’, where
a(g1, g2, . . . , gp) = (g2, . . . , gp, g1). It is easily checked that this is an action. Since or-
bits partitionX, the sum of the sizes of distinct orbits must be |X|, but |X| = |G|p−1,
since we can choose anything to put in the p − 1 entries, and set the last entry to
the inverse of their product. So since p | |G|, p | |X|. We have by the orbit-stabiliser
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theorem that
|Orb(g1, . . . , gp)| · | Stab(g1, . . . , gp)| = |Cp| = p.

So any orbit has size 1 or p, and they sum to |X|, so

|X| =
∑

orbits of size 1

1 +
∑

orbits of size p

p.

Clearly |Orb(e, e, . . . , e)| = 1, and thus as p | |X|, there must be some other orbits
of size 1. But orbits of size 1 must be of the form (g, g, . . . , g), so there exists some
g 6= e ∈ G such that gp = e.

§5.3 Important Actions

Once you have recovered from how nice the previous theorem was, we will look at some
important examples of group actions. We will begin with left multiplication actions.

Lemma 5.16 (Left Multiplication is an Action)

Let G be a group. Then G acts on itself by left multiplication. This action is faithful
and transitive.

Proof. For any g ∈ G and x ∈ G, then gx ∈ G. Also, ex = x for any x ∈ G, and
lastly, (gh)x = g(h(x)) is true by the associativity of G, so it is an action. It is
faithful as if gx = x then g = e by the uniqueness of the identity. It’s also transitive
as given x, y ∈ G, set g = yx−1, then g(x) = gx = yx1x = y.

Definition 5.17 (Left Regular Action)

The left multiplication action of a group on itself is called the left regular action.

With this group action, we can finally prove a result that we have been vaguely alluding
to (and which should make intuitive sense).

Theorem 5.18 (Cayley’s Theorem)

Every group is isomorphic to a subgroup of a symmetric group.

Proof. Let G act on itself by the left regular action. This gives a homomorphism
ρ : G → Sym(G), with kerφ = {e} since the action is faithful. Hence by the first
isomorphism theorem, G/ kerφ ∼= img φ ≤ Sym(G).

Proposition 5.19 (Left-Coset Action)

Let H ≤ G. Then G acts on the set of left-cosets by left multiplication, and the
action is transitive. This is the left-coset action.

Proof. We have g(g1H) = gg1H, so g(g1H) is a left coset. Also e(g1H) = eg1H =
g1H. Finally, (gg′)(g1H) = gg′g1H = g(g′(g1H)), so this is an action. Also given
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g1H and g2H, we have (g1g
−1
2 )(g2H) = g1g

−1
2 g2H = g1H, so this action is transitive.

Remark. For H = {e}, then this is the left-regular action, as the cosets are just the
elements of G.

This action gives us a way to induce actions of G onto its quotient groups G/N .

§5.3.1 Conjugation

The next idea we will discuss is conjugation.

Definition 5.20 (Conugation)

Given g, h ∈ G, the element hgh−1 ∈ G is the conjugate of g by h.

Conjugate elements should be thought of as doing the ‘same thing’ but from ‘different
points of view’. The exact meaning of this will be more clear as we look at some examples
later on.

Example 5.21

Consider the group D10, and consider the conjugate s and rsr−1, where s is reflection
through the vertex v1, and r is a clockwise rotation sending v1 to v2 and so on.

What rsr−1 does is rotating so that the reflection can be done through a different
axis.

V1

V2

V3V4

V5

V2

V3

V4V5

V1
r−1

V2

V1

V5V4

V3
s

V3

V2

V1V5

V4
r

So in this example, we are still performing an action, just from a different point of
view.

Example 5.22

In the group GLnR, the conjugate of a matrix represents the same transformation
but written with respect to a different basis.

So it’s natural to expect that conjugate elements have similar properties. Let’s prove
some facts about conjugation.

Proposition 5.23 (Conjugation is an Action)

A group G acts on itself by conjugation.

Proof. We have g(x) = gxg−1 ∈ G for all g, x ∈ G. Also, e(x) = exe−1 = x for all
x, and finally, g(h(x)) = g(hxh−1)g−1 = (gh)x(gh)−1 = (gh)(x), for all g, h, x ∈ G.
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So this is an action.

This action’s kernel, orbits and stabilisers even have their own names.

Definition 5.24 (Center)

The kernel of the conjugation action of G on itself is the center Z(G) of G:

Z(G) = {g ∈ G : ghg−1 = h, ∀h ∈ G}.

Equivalently, the center of a group is the set of all elements that commute with
every element in the group.

Definition 5.25 (Conjugacy Class)

An orbit of the conjugation action is a conjugacy class:

ccl(h) = {ghg−1 : g ∈ G}.

Definition 5.26 (centralizers)

The stabilisers of the conjugation action are the centralizers:

C(h) = {g ∈ G : ghg−1 = h}.

Equivalently, C(h) is the set of elements that commute with h.

There is a connection between the center and the centralizers, namely

Z(G) =
⋂
h∈G

CG(h).

Definition 5.27 (Subgroup Conjugation)

If H ≤ G, g ∈ G, then the conjugate of H by g is

gHg−1 = {ghg−1 : h ∈ H}.

Proposition 5.28

Let H ≤ G and g ∈ G. Then gHg−1 is also a subgroup of G.

Proof. Clearly e ∈ gHg−1, so it is nonempty. Thus we can apply the subgroup
criterion. Let gxg−1 and gyg−1 ∈ gHg−1. Then

(gxg−1)(gyg−1)−1 = (gxg−1gy−1g−1) = g(xy−1)g−1,

and as H ≤ G, we have xy−1 ∈ H so g(xy−1)g−1 ∈ gHg−1, so it is a subgroup.

In fact, gHg−1 ∼= H, which should match our intuition about how conjugate elements
act.
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Proposition 5.29 (Subgroup Conjugation is an Action)

A group G acts by conjugation on the set of its subgroups. The singleton orbits are
the normal subgroups.

Proof. Let G act on the set of subsets by conjugation, that is, for H ≤ G, we define
g(H) = gHg−1. We will check that this is a group action.

We have closure by the argument above. We have identity, as eHe−1 = H for any
subgroup H. Also for g, k ∈ G, we have g ◦ k(H) = g(kHk−1) = gkHk−1g−1 =
(gk)H(gk)−1 = (gk)(H), so this is indeed an action.

The singleton orbits are the normal subgroups, as a subgroup N is normal if
gNg−1 = N for any g ∈ G (which corresponds to every element in G stabilising
N).

Another way to look at normal subgroup is using conjugation. We already established
that if and only if N is normal in G, we have gNg−1 = N , for any g ∈ G.

Proposition 5.30

Normal subgroups are unions of conjugacy classes.

Proof. Let N E G. Then if h ∈ N , then ghg−1 ∈ N for any g ∈ G. Hence ccl(h) ⊆
N . So N is a union of conjugacy classes of its elements, that is, N =

⋃
h∈N ccl(h).

Conversely, suppose that we have a subgroup H that is the union of conjugacy
classes. Then taking any g ∈ G and h ∈ H, ,then ghg−1 ∈ H, so H E G.

Example 5.31

Consider the group A3 = {e, (1 2 3), (1 3 2)} E S3. We can write this as A3 =
{e} ∪ {(1 2 3), (1 3 2)}, which are both conjugacy classes.

Conjugation in Sn and An is rather interesting. Let’s begin with a lemma.

Lemma 5.32 (Conjugation Permutes Elements in a Cycle)

Given k-cycle (a1 · · · ak) and σ ∈ Sn, we have

σ(a1 · · · ak)σ−1 = (σ(a1) σ(a2) · · · σ(ak)),

which is also a k-cycle.

Proof. Note that if we consider the action of σ(a1 · · · ak)σ−1 on ai, we have

σ(ai) 7→ ai 7→ ai+1 7→ σ(ai+1).

So σ(a1 · · · ak)σ−1 does the same thing as (σ(a1) σ(a2) · · · σ(ak)) on the set
{σ(a1), . . . , σ(ak)}. Then for any a 6∈ {σ(a1), . . . , σ(ak)}, then σ(a1 · · · ak)σ−1 and
(σ(a1) σ(a2) · · · σ(ak)) both leave a unchanged.
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Proposition 5.33

Two elements of Sn are conjugate in Sn if and only if they have the same cycle type.

Proof. Two elements that are conjugate will certaintly gave the same cycle type, as
given σ ∈ Sn, we can write σ as the product of disjoint cycles σ = σ1σ2 · · ·σm. Then
if ρ ∈ Sn, ρσρ−1 = (ρσ1ρ

−1)(ρσ2ρ
−1) · · · (ρσmρ−1), and by our previous lemma,

ρσiρ
−1 us a cycle of the same length as σi, and ρσiρ

−1 are all disjoint (as ρ is a
bijection). Conversely, if we have σ and τ that are the same cycle type, then we can
write

σ = (a1 a2 · · · ak1)(ak1+1 ak1+2 · · · ak2) · · ·
τ = (b1 b2 · · · bk1)(bk1+1 bk1+2 · · · bk2) · · ·

in disjoint cycle notation, including any singletons (those fixed by σ and τ) so that
all of {1, . . . , n} appears in both σ and τ . Then setting ρ to be ρ(ai) = bi, we will
have ρσρ−1 = τ .

Let’s have a look at an example: the conjugacy classes of S4.

Example 5.34 (Normal subgroups of S4)

Consider the following table of conjugacy classes of S4.

Cycle Type Example Element Size of ccl Size of CS4 Sign

1, 1, 1, 1 e 1 24 +1
2, 1, 1 (1 2) 4 · 3/2 = 6 4 −1
2, 2 (1 2)(3 4) 4 · 3/(2 · 2) = 3 8 +1
3, 1 (1 2 3) 4 · 3 · 2/3 = 8 3 +1
4 (1 2 3 4) 4 · 3 · 2/4 = 6 4 −1

From this table, we can work out the normal subgroups of S4. Each normal subgroup
must contain e, and must be the union of conjugacy classes, and we must have
the order of the subgroup dividing the order of the group. We can check what
combinations of conjugacy classes satisfies these.

We can consider these possibilities by considering the divisors of 24, the order of the
group: 1, 2, 3, 4, 6, 8, 12, 24. From these, we have

• Order 1: {e}

• Order 4: {e, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}, which is C2×C2, also known as
V4, the Klein four group.

• Order 12: A4.

• Order 24: S4.

Now because we have all of the normal subgroups, we can also get all of the possible
quotients of S4, as

• S4/{e} ∼= S4.

• S4/V4 ∼= S3.
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• S4/A4
∼= C2.

• S4/S4 ∼= {e}.

Now let’s look at conjugation in the alternating group. Note that cclSn(σ) = {τστ−1 :
τ ∈ Sn} and cclAn(σ) = {τστ−1 : τ ∈ An}, so cclAn(σ) ⊆ cclSn(σ). But elements that
are conjugate in Sn may not be conjugate in An. For eample, (2 3)(1 2 3)(2 3) = (1 3 2) ∈
S3, but (2 3) 6∈ A3, and there are no elements τ ∈ A3 such that τ(1 2 3)τ−1 = (1 3 2).

Some conjugacy classes of Sn will split into smaller conjugacy classes in An. By orbit-
stabiliser, |Sn| = | cclSn(σ)|·|CSn(σ)|, and |An| = | cclAn(σ)|·|CAn(σ)|. But |Sn| = 2·|An|
and | cclAn(σ)| ≤ | cclSn(σ)|, so either cclAn(σ) = cclSn(σ) and |CAn(σ)| = 1

2 |CSn(σ)|, or
| cclAn(σ)| = 1

2 | cclSn(σ)| and |CAn(σ)| = |CSn(σ)|.

To consider this further, we will introduce a natural definition.

Definition 5.35 (Splitting Conjugacy Classes)

When | cclAn(σ)| = 1
2 | cclSn(σ)|, we say that the conjugacy class of σ splits in An.

So when does this happen?

Proposition 5.36

The conjugacy class of σ ∈ An splits in An if and only if no odd permutations
commute with σ.

Proof. | cclAn(σ)| = 1
2 | cclSn(σ)| ⇐⇒ CAn(σ) = CSn(σ). Now CAn(σ) = An ∩

CSn(σ), and An ∩ CSn(σ) = CSn(σ) if and only if CSn(σ) doesn’t contain any odd
elements, that is, when no odd permutations commute with σ.

Example 5.37 (Conjugacy classes in A4)

We will consider the conjugacy classes in A4.

Cycle Type Example Element Odd Element in CS4? Size of cclS4 Size of cclA4

1, 1, 1, 1 e yes, eg. (1 2) 1 1
2, 2 (1 2)(3 4) yes, eg. (1 2) 3 3
3, 1 (1 2 3) no 8 4

Example 5.38 (Conjugacy classes in A5)

We will consider the conjugacy classes in A5.
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Cycle Type Example Element Odd Element in CS5? Size of cclS5 Size of cclA5

1, 1, 1, 1 e yes, eg. (1 2) 1 1
2, 2, 1 (1 2)(3 4) yes, eg. (1 2) 15 15
3, 1, 1 (1 2 3) yes, eg. (4 5) 20 20

5 (1 2 3 4 5) no 24 12

We can use this result to prove something that was mentioned earlier.

Theorem 5.39

A5 is simple.

Proof. Normal subgroups must be unions of conjugacy classes, must contain e and
must divide |A5| = 60. The size of conjugacy classes in A5 are 1, 15, 20, 12 and 12.
To sum these to get a divisor of 60, we can only have 1, and 1+15+20+12+12 = 60,
so the only normal subgroups are {e} and A5.

Remark. All An for n ≥ 5 are simple.

§6 The Möbius Group, Revisited

With group actions, we now have more tools to study the Möbius group M . Recall that
we defined the Möbius group as the set of Möbius maps, under composition.

Definition (Möbius Maps)

A Möbius map is a function f : Ĉ→ Ĉ of the form

f(z) =
az + b

cz + d
,

with a, b, c, d ∈ C and ad− bc 6= 0, and with f(−d/c) =∞ and

f(∞) =

{
a
c if c 6= 0

∞ if c = 0
.

This definition defined an action of the Möbius group on the extended complex plane.
This action is faithful.

Proposition 6.1

The action of the Möbius group M on the extended complex plane is faithful, and
so M≤ Sym(Ĉ).

Proof. Consider ρ : M → Sym(Ĉ) given by ρ(f)(z) = f(z). Then if ρ(f) is the
identity permutation, then f is the identity in M . So ρ is injective and the action
is faithful.

We can think about points that are invariant under Möbius map.
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Definition 6.2 (Fixed Point)

A fixed point of a Möbius map f : Ĉ→ Ĉ is a point z ∈ Ĉ such that f(z) = z.

Theorem 6.3

A Möbius map with at least three fixed points is the identity.

Proof. Let f(z) = az+b
cz+d have at least 3 fixed points. If ∞ is not a fixed point of f ,

then az+b
cz+d = z for more than three complex numbers z, that is, cz2+(d−a)z−b = 0

has more than three roots in C. But this is quadratic, so we can’t have more than
two roots, unless c = b = 0, d = a for all z. But then f(z) = z. If ∞ is a fixed
point of f , then we have a/c =∞ =⇒ c = 0, and thus z = az+b

d for more than two
complex numbers z, which can only occur when a = d, b = 0, so f(z) = z.

What this theorem really tells us is that knowing what a Möbius map does on 3 points
in Ĉ uniquely determines it.

Corollary 6.4

If two Möbius maps coincide on three distinct points in Ĉ, then they are equal.

Proof. Let f, g ∈ M be such that f(z1) = g(z1), f(z2) = g(z2) and f(z3) = g(z3)
for three distinct points z1, z2 and z3 ∈ Ĉ. Then g−1f(zi) = g−1g(zi) = zi for
i = 1, 2, 3, and thus g−1f fixed more than 3 points, and it must be the identity. So
f = g.

Theorem 6.5 (Existence of Unique Möbius Maps)

There is a unique Möbius map sending any three distinct points of Ĉ to any three
distinct points of Ĉ. That is, given z1, z2, z3 ∈ Ĉ and w1, w2, w3 ∈ Ĉ all distinct then
there’s a unique f ∈M such that f(zi) = wi for i = 1, 2, 3.

Proof. Note that uniqueness follows from existence by the previous corollary. We
will construct the map by supposing that w1 = 0, w2 = 1 and w3 =∞, and then we
will use the group structure. Define f(z) = (z2−z3)(z−z1)

(z2−z1)(z−z3) . This satisfies f(zi) = wi

for all i. There are some special cases. If z1 = ∞ use f(z) = z2−z3
z−z3 , if z2 = ∞ use

f(z) = z−z1
z−z3 , and if z3 =∞ use f(z) = z−z1

z2−z1 .

Thus we can find some f1 sending (z1, z2, z3) to (0, 1,∞). But then in the same
way we can find some f2 sending (w1, w2, w3) to (0, 1,∞). But then we can use the
group structure, considering f = f−12 ◦ f1, this will send (z1, z2, z3) to (w1, w2, w3),
as required.

§6.1 Conjugation

For two Möbius maps f and h, we can consider what happens when we conjugate hfh−1.
This acts in much the same way that any conjugate in a group structure does. For
example, ord(hfh−1) = ord(f), since (hfh−1)n = hfnh−1. Also, If f fixes z, then
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hfh−1 fixes z. In particular, the number of fixed points of a conjugate is the same as
that of the original Möbius map. This observation has a partial converse.

Theorem 6.6

Every non-identity f ∈M has either 1 or 2 fixed points. If f has 1 fixed point, then
it will be conjugate to the map z 7→ z + 1, and if f has 2 fixed points, it will be
conjugate to a map of the form z 7→ az for some non-zero a ∈ C.

Proof. We know that a non-identity Möbius map has at most 2 fixed points, but
we show that there can’t be zero fixed points. If f(z) = az+b

cz+d , then considering the

quadratic cz2 + (d− a)z− b = 0, formed by considering f(z) = z, this must have at
least one solution.

Now we consider the two cases. If f has exactly 1 fixed point, say z0, then choose
some z1 ∈ C which is not fixed by f . Then consider the triple (z1, f(z1), z0), which
are all distinct points. So there is some g ∈ M so that (z1, f(z1), z0) 7→ (0, 1,∞).
Then we can consider the conjugate of f by g. Then gfg−1 sends 0 7→ z1 7→ f(z1) 7→
1, and ∞ 7→ z0 7→ z0 7→ ∞, so gfg−1(0) = 1, gfg−1(∞) = ∞, so gfg−1 must be
equal to z 7→ az + 1 for a ∈ C. If a 6= 1, then there is a non-infinity fixed point,
1/(1 − a), but this is a contradiction, so a = 1. Thus f is conjugate via g to the
map z 7→ z + 1, as required.

If f has exactly 2 fixed points, z0 and z1, then let g be any Möbius map sending
(z0, z1) 7→ (0,∞). So gfg−1 sends 0 7→ z0 7→ z0 7→ 0, and ∞ 7→ z1 7→ z1 7→ ∞.
So this conjugate fixes 0 and ∞. We can deduce that gfg−1 must have the form
z 7→ az, where a = gfg−1(1).

We can use this to efficiently compute powers of Möbius maps, fn for all f ∈M. We can
see that (gfg−1)m = gfmg−1, but this will be easy to compute, because the conjugate
can have a nice form. Then we can conjugate back to get fm.

§6.2 Circles and Lines – Geometric Properties of Möbius Maps

We’ve seen that the image of 3 points in C under a given Möbius map uniquely determines
that map. We also know (from geometry) that 3 points determine lines or circles.

In the complex plane, the a circle with center b ∈ C and radius r > 0 ∈ C is the locus
of points satisfying

|z − b| = r.

We can then write this as |z − b|2 − r2 = 0, or (z − b)(z − b) − r2 = 0, which we can
write as

zz − bz − bz + bb− r2 = 0. (∗)

Also, the equation of a straight line in the complex plane (for a, b, c ∈ R) is

a · re(z) + bi · im(z) = c,

that is
a+ ib

2
z +

a+ ib

2
z − c = 0. (†)

The form of these equations is slightly unusual but they are put in this form to emphasize
the following definition. While we require three points in C to determine a circle, we
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only need two points to determine a line. But if we work in Ĉ, we consider the point at
infinity, ∞ to be on every line. In this way, a line is determined by exactly 3 points in
Ĉ, namely two points on the complex plane and a point at infinity.

Thinking in this way, we can unify the concepts of circles and lines in the extended
complex plane, by introducing clines, a neologism covering both circles and lines.

Definition 6.7 (Clines in Ĉ)

A cline in Ĉ is the set of points satisfying the equation

Azz +Bz +Bz + C = 0,

with A,C ∈ R, B ∈ C, and |B|2 > AC. We consider ∞ ∈ Ĉ to be a solution if and
only if A = 0.

Any equation of the form in the definition will match with exactly one of equation (∗)
or (†).

Looking back at Möbius maps, we get the rather interesting result.

Theorem 6.8 (Möbius Maps Preserve Clines)

Möbius send clines in Ĉ to clines in Ĉ.

Proof. Recall that the Möbius group M is generated by a composition of dila-
tions/rotations, translations and inversions. That is, z 7→ az, z 7→ z + b and
z 7→ 1/z.

Writing S(A,B,C) for the circle satisfying Azz + Bz + Bz + C = 0, we can check
what happens under the various maps.

Under z 7→ az, we have S(A,B,C) 7→ S
(
A
aa ,

B
A
, C
)

. Under z 7→ z+b, S(A,B,C) 7→
S(A,B − Ab,C + Abb − Bb − Bb). Finally, under z 7→ 1/z, we have S(A,B,C) 7→
S(C,B,A).

In practice, because both clines and Möbius maps are determined by 3 points (or where
they send 3 points), it is quite straightforward to find a Möbius map which sends a given
cline to another cline.

Example 6.9

Let’s say we wanted to find f ∈M which send the unit circle to the real line.

If we pick three points on the unit circle, say {−1, i1}, and three points on R, say
{−1, 0, 1}, then we could find a map f such that −1 and 1 are fixed, but so that i
is sent to 0. For example,

f(z) =
z − i
1− iz

works.
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§6.3 Cross Ratios

Recall that given three points z1, z2, z3 ∈ Ĉ, we have a unique Möbius map f such that
f(z1) = 0, f(z2) = 1 and f(z3) =∞.

Definition 6.10 (Cross Ratio)

If we have four distinct points z1, z2, z3, z4 ∈ Ĉ, then their cross-ratio (z1, z2, z3, z4)
is defined to be f(z4), where f is the unique Möbius map such that f(z1) = 0,
f(z2) = 1 and f(z3) =∞.

In particular, the cross ratio of (0, 1,∞, w) = w, for all w ∈ Ĉ. This is because f is
forced to be the identity. There is a way to compute the cross ratio.

Theorem 6.11 (Computing Cross Ratios)

For points z1, z2, z3 and z4 ∈ Ĉ, we have

(z1, z2, z3, z4) =
(z4 − z1)(z2 − z3)
(z2 − z1)(z4 − z3)

.

Proof Sketch. This follows from the construction of the unique Möbius map.

Remark. There are many conventions for the cross-ratio, depending on the order of 0,
1 and ∞. Some of these will be the same.

Proposition 6.12

Double transpositions of the zi fix the cross-ratio, that is,

(z1, z2, z3, z4) = (z2, z1, z4, z3) = (z3, z4, z1, z2) = (z4, z3, z2, z1).

Proof Sketch. Note that this follows from the previous theorem.

There is a connection between cross ratios and Möbius maps.

Theorem 6.13

Möbius maps preserve cross-ratio.

Proof. Let f ∈ M be the unique Möbius map such that f : (z1, z2, z3) 7→ (0, 1,∞),
so that f(z4) = (z1, z2, z3, z4). Then for any Möbius map g ∈ M, we have f ◦ g−1
sends g(z1) 7→ 0, g(z2) 7→ 1, and g(z3) 7→ ∞. Also f ◦ g−1 is unique, as Möbius
maps are uniquely determined by how they transform three points. So, if we have
(g(z1), g(z2), g(z3), g(z4)) = (f ◦ g−1)(g(z4)) = f(z4) = (z1, z2, z3, z4).

This has an interesting geometric corollary.

Theorem 6.14

Four distinct points z1, z2, z3, z4 ∈ Ĉ lie on a cline if and only if (z1, z2, z3, z4) ∈ R.
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Proof. Let f be the unique Möbius map sending (z1, z2, z3) → (0, 1,∞), so that
f(z4) = (z1, z2, z3, z4). The cline C passing through z1, z2, z3 is sent to the cline
through 0, 1,∞ (the real axis), and so z4 lies on C if and only if f(z4) lies on the
real axis, that is, f(z4) ∈ R ∪ {∞}. But f(z3) =∞, so f(z4) 6=∞. Thus z4 lies on
C if and only if z4 ∈ R.

§7 Matrix Groups

In this chapter we will look at various groups of matrices. We will look at the actions
of matrix groups on related actions, and we will study distance preserving maps (or
isometries) on R2 and R3.

§7.1 Examples of Matrix Groups

We are going to write Mn×n(F) to denote the set of n × n matrices over the field F,
which will typically be either R or C.

Definition 7.1 (General Linear Group)

GLn(F) = {A ∈Mn×n(F) | A is invertible} is the general linear group over F.

This is indeed a group, and the determinant is a surjective homomorphism, namely
det : GLn(F)→ F∗, the set of non-zero elements in F.

Definition 7.2 (Special Linear Group)

The special linear group SLn(F) ≤ GLn(F) is the kernel of the det homomorphism,
that is, the set of elements of GLn(F) with determinant 1.

Recall the following facts about matrices. Gives A,B ∈ GLn(R),

• (AB)T = BTAT ,

• (A−1)T = (AT )−1,

• AAT = I ⇐⇒ ATA = I ⇐⇒ AT = A−1,

• (AT )T = A,

• det(AT ) = det(A).

With these we can define some groups.

Definition 7.3 (Orthogonal Group)

The orthogonal group is the group On = {A ∈ GLn(R) | ATA = I}.

Proposition 7.4

det : On → {±1} is a surjective homomorphism.
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Proof. This is a homomorphism as the determinant is a homomorphism in GLn(R),
and for A ∈ On, then ATA = I, and 1 = det(AAT ) = det(A) det(AT ) = det(A)2, so
det(A) = ±1. It is surjective as det I = 1, and det(diag(−1, 1, 1, . . . , 1)) = −1.

Definition 7.5 (Special Orthogonal Group)

The special orthogonal group SOn is the kernel of the determinant homomor-
phism, that is, SOn = {A ∈ On | detA = 1}.

These groups of matrices will be the main focus of this chapter. All of the matrix groups
defined above act on the corresponding vector spaces. For example, GLn(F) and SLn(F)
act on Fn, and On, SOn acts on Rn.

Example 7.6

Let G ≤ GL2(R) act on R2. We will find the orbits. Note that {0} is always a
singleton orbit, since we are acting by linear maps.

• If G = GL2(R), then G acts transitively on R2\{0} since we can complete any
v 6= 0 to a basis, and we have an invertible change of basis matrix sending any
basis to an other basis.

• If G =

{(
a b
0 d

)
∈ GL2(R)

}
=

{(
a b
0 d

)
| a, d 6= 0

}
, then Orb(0) = {0},

Orb

(
1
0

)
=

{(
a
0

)
| a 6= 0

}
, and Orb

(
0
1

)
=

{(
b
d

)
| d 6= 0

}
. This is all of

the orbits, since the union gives all of R2.

§7.2 Möbius Maps as Matrices

Let’s first examine the connection between Möbius maps and matrices.

Proposition 7.7

The function φ : SL2(C)→M where(
a b
c d

)
7−→ f, where f(z) =

az + b

cz + d

is a surjective homomorphism, with kernel {±I}.

Proof. First we show that φ is a homomorphism. If f1(z) = a1z+b1
c1z+d1

and f2(z) =
a2z+b2
c2z+d2

, then we have f2 ◦ f1(z) = az+b
cz+d , where(

a b
c d

)
=

(
a2 b2
c2 d2

)(
a1 b1
c1 d1

)
.

It follows directly that φ is a homomorphism.
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To see that it is surjective, we note that if az+b
cz+d is a Möbius map, then the matrix

M =

(
a b
c d

)
∈ GL2(C),

since ad − bc 6= 0. But the determinant may not be zero, so letting D2 = detM ,
consider the matrix

M

D2
=

(
a
D

b
D

c
D

d
D

)
,

this has determinant one (and thus is in SL2(C)) and
a
D
z+ b

D
c
D
z+ d

D

= az+b
cz+d , so this homo-

morphism is surjective.

As for the kernel of φ, If φ

(
a b
c d

)
= Id ∈ M, then az+b

cz+d = z, for all z ∈ Ĉ. That

is, c = b = 0 and a = d, and thus

(
a b
c d

)
=

(
a 0
0 a

)
. Since this has determinant 1,

we also need a = ±1. Thus kerφ = {I,−I}.

Corollary 7.8

M∼= SL2(C)/{±I}.

Proof. Follows from the first isomorphism theorem.

This quotient SL2(C)/{±I} is the projective special linear group, PSL2(C).

§7.3 Conjugation and Changes of Basis

We can look at how the conjugation action of GLn(F) on Mn×n(F) using the idea of
changes of basis.

Recall that if we have some linear map α : Fn → Fn, we can represent α as a matrix A
with respect to a basis {e1, e2, . . . , en} of Fn. se a different basis {f1, f2, . . . , fn}, then
α will be represented with respect to this basis by the matrix P−1AP , where P is the
change of basis matrix, defined by

fj =

n∑
i=1

Pijei.

This is an example of conjugation.

Proposition 7.9

GLn(F) acts on Mn×n by conjugation. The orbit of a matrix A ∈Mn×n(F) is the set
of matrices representing the same linear map as A with respect to different bases.

Proof. To see that this is an action, if we have a matrix A ∈Mn×n(F), then P (A) =
PAP−1 ∈ Mn×n(F) for any P ∈ GLn(F). Also, I(A) = IAI−1 = A, for any
matrix A, and finally, if we have Q,P ∈ GLn(F), then (QP )(A) = QPA(QP )−1 =
Q(PAP−1)Q−1 = Q(P (A)), for any matrix A. So GLn(F) acts on Mn×n(F).
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By the argument above, we have that A and B are in the same orbit if and only
if A = PBP−1 for some P ∈ GLn(F), which is true if and only if B = P−1AP .
That is, B represents the same linear map as A with respect to a different basis.
Precisely, this is the basis obtained by the change of basis corresponding to P .

Let’s look at a example of this action.

Example 7.10 (Jordan Normal Form)

Recall that any matrix in M2×2(C) is conjugate to a matrix in Jordan Normal Form
(JNF). That is, it’s conjugate to one of the following types of matrices:(

λ1 0
0 λ2

)
(where λ1 6= λ2),

(
λ 0
0 λ

)
, or

(
λ 1
0 λ

)
.

In the case of the first type of matrix, the values λ1 and λ2 are uniquely determined
by the matrix (look at the eigenvalues), but the order is not determined uniquely.
Other than that, no two matrices on this list are conjugate.

This gives us a complete description of the orbits of the action of GL2(C) on M2×2(C)
via conjugation.

§7.4 Geometry of Orthogonal Groups

We are now going to look more closely at the orthogonal and special orthogonal group,
and also the symmetries of R2 and R3.

Consider the standard inner product in Rn: x · y =
∑n

i=1 xiyi. Thinking of these as
column vectors, we can write this as xT y. If we consider the columns p1, . . . , pn of
P ∈ On, we have (P TP )ij = pTi pj = pi · pj . So since P ∈ On if and only if P TP = I, we
have that

P ∈ On ⇐⇒ pi · pj = δij ,

using the kronecker delta. This proves the following proposition.

Proposition 7.11

P ∈ On if and only if the columns of P form an orthonormal basis.

Thinking of P ∈ On as a change of basis matrix, we get the following result.

Proposition 7.12

Consider On acting on Mn×n(R) by conjugationa. Then two matrices will be in the
same orbit if and only if they represent the same linear map with respect to two
orthonormal bases.
aThis is an action as On is a subgroup of GLn

Another characterization of On is that it is inner-product preserving.

Proposition 7.13 (On preserves inner products)

P ∈ On if and only of (Px) · (Py) = x · y for any x, y ∈ Rn.
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Proof. If P ∈ On, then

(Px) · (Py) = (Px)T (Py) = xTP TPy = xT Iy = xT y = x · y.

If (Px) · (Py) = x · y for all x, y ∈ Rn, then taking the basis vectors ei and ej , we
have

Pei · Pej = ei · ej = δij .

so the vectors Pe1, . . . , P en are orthonormal. Then the columns of P are orthonor-
mal, so P ∈ On by our previous proposition.

Corollary 7.14

For P ∈ On, P preserves the length of vectors and the angle between vectors.

Proof. This follows directly from the preservation of inner product.

Let’s investigate what the elements of On and SOn look like. First, a bit of background.

Definition 7.15

If a ∈ Rn with |a| = 1, then the reflection in the plane normal to a is the linear
map Ra : Rn → Rn such that x→ x− 2(x · a)a.

a

Plane normal to a

v

Ra(v)

Lemma 7.16

Ra lies in On.

Proof. Let x, y ∈ Rn. Then

Ra(x) ·Ra(y) = (x− 2(x · a)a) · (y − 2(y · a)a)

= x · y − 2(x · a)(a · y)− 2(y · a)(x · a) + 4(x · a)(y · a)(a · a)

= x · y,

so Ra ∈ On, as it preserves inner products.

As we might expect, conjugates of reflections are also reflections.

Lemma 7.17 (Conjugates of Reflections are Reflections)

Given P ∈ On, PRaP
−1 = RPa.
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Proof. We have

PRaP
−1(x) = P (P−1(x)− 2(P−1(x) · a)a)

= x− 2(P−1(x) · a)(Pa),

but P−1 = P T , so P−1(x)·a = P Tx·a = xTPa, which is just x·Pa. So PRaP
−1(x) =

x− 2(x · Pa)(Pa) = RPa(x).

So reflections lie in On, but do they lie in SOn? We need to know the determinant
of a reflection Ra. We know that the determinant of a matrix is the product of its
eigenvalues, so eigenvalues of Ra might be a helpful thing to find.

We can spot some straightforward eigenvectors:

Ra(a) = a− 2(a · a)a = −a,

so a is an eigenvector with eigenvalue -1. And, for x in the plane normal to a, we get

Ra(x) = x− 2(x · a)a = x.

so x is an eigenvector with eigenvalue 1. This is all of the eigenvalues, as the eigenvalue
1 has multiplicity n − 1, as we can find n − 1 linearly independent eigenvectors in the
plane normal to a. Thus we have

det(Ra) = (−1) · (1)n−1 = −1.

This proves the following proposition.

Proposition 7.18 (Reflections are not in SOn)

Ra ∈ On \ SOn.

To think about the elements that are in SOn, we will begin by thinking about SO2.

Theorem 7.19 (Elements of SO2)

Every element of SO2 is of the form(
cos θ − sin θ
sin θ cos θ

)
,

for some θ ∈ [0, 2π).a Conversely every such element lies in SO2.

aThis is an anticlockwise rotation of R2 about the origin by angle θ.

Proof. Consider the matrix

A =

(
a b
c d

)
∈ SO2 .

We have ATA = I, and detA = 1. Thus AT = A−1, so(
a b
c d

)
=

(
d −b
−c a

)
,
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and a = d, b = −c. Also since ad− bc = 1, so a2 + c2 = 1. So we can write a = cos θ
and c = sin θ for a unique θ ∈ [0, 2π). Hence every matrix in SO2 has the form as
claimed. Conversely, the determinant of the matrix given is always one, and is in
O2, and hence lies in SO2.

Theorem 7.20

The elements of O2 \ SO2 are the reflections in lines through the origin.

Proof. Consider the matrix

A =

(
a b
c d

)
∈ O2 \ SO2 .

Then ATA = I, and detA = −1. Then we have

AT =

(
a c
b d

)
= −

(
d −b
−c a

)
= A−1,

and so a = −d, b = c. Since ad − bc = −1, we have a2 + c2 = 1, so a = cos θ,
c = sin θ for unique θ ∈ [0, 2π), and

A =

(
cos θ sin θ
sin θ − cos θ

)
.

We can check that

A

(
sin θ/2
− cos θ/2

)
= −

(
sin θ/2
− cos θ/2

)
, and A

(
cos θ/2
sin θ/2

)
= −

(
cos θ/2
sin θ/2

)
,

so A is the reflection in the plane orthogonal the unit vector
(
sin θ/2 − cos θ/2

)
.

Conversely any reflection in a line through the original will have this form, and so
is in O2 \SO2.

Corollary 7.21

Every element of O2 is the composition of at most two reflections.

Proof. Every element in O2 \SO2 is a reflection, so if A ∈ SO2, then

A =

[
A

(
−1 0
0 1

)][(
−1 0
0 1

)]
,

and each of the matrices on the right is in O2 \ SO2, and is thus a reflection.

Moving from two to three dimensions, we have the following theorem.

Theorem 7.22

If A ∈ SO3, then there exists a vector v ∈ R3 such that |v| = 1 and Av = v.
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Proof. Such a v is an eigenvector for the eigenvalue 1, so it suffices to show 1 is an
eigenvalue of A. This is equivalent to showing the determinant det(A− I) = 0. We
have

det(A− I) = det(A−AAT )

= det(A(I −AT ))

= detA · det(I −AT )

= det(I −AT )

= det((I −A)T )

= det(I −A)

= det(−I) · det(A− I) = −det(A− I),

so det(A− I) = 0, as required.

Corollary 7.23

Every A ∈ SO3 is conjugate in SO3 to a matrix of the form1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 .

Proof. By the previous theorem, there exists v1 ∈ R3 such that |v1| = 1, and
Av1 = v1. We can extend this to an orthonormal basis {v1, v2, v3} of R3. Then for
i = 2, 3, we have

Avi · v1 = Avi ·Av1 = vi · v1 = 0,

so Av2 and Av3 lie in 〈v2, v3〉. So A maps 〈v2, v3〉 to itself. Now consider the
restriction of A to 〈v2, v3〉. This still has determinant 1, so A is an element of SO2,
and its matrix must therefore be of the form(

cos θ − sin θ
sin θ cos θ

)
.

So A has the matrix

A =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 ,

with respect to the basis {v1, v2, v3}. The change of basis matrix P lies in O3 since
{v1, v2, v3} is an orthonormal basis, and if P does not lie in SO3, then instead we
can use the basis {−v1, v2, v3}.

Geometrically, this tells us in particular that every element in SO3 is a rotation about
some axis.

Corollary 7.24

Every element of O3 is the composition of at most 3 reflections.
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Proof. If A ∈ SO3, then there exists P ∈ SO3 such that PAP−1 = B, with

B =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 .

Since this matrix is the composition of at most 2 reflections by our result in two
dimensions, so B = B1B2. Thus A also is, as the conjugate of a reflection is a
reflection.

If A ∈ O3 \SO3, then detA = −1, then we can write

A =

A
−1 0 0

0 1 0
0 0 1

−1 0 0
0 1 0
0 0 1

 ,
and the first lies in SO3 and is thus the product of at most 2 reflections, and second
matrix is a reflection.

§7.5 Symmetries of the Cube Revisited

We will finish our discussion of matrix groups by again considering the symmetries of the
cube. We can think of the symmetry groups of any of the platonic solids as subgroups
of O3. We can do this by placing our solid at the origin, and then any symmetry of the
solid will be an element of O3.

One fact about O3 is that we can write it as a direct product.

Lemma 7.25

O3
∼= SO3×C2.

Proof Sketch. Apply the direct product theorem.

Here, the subgroup C2 is generated by the map v 7→ −v. So if v 7→ −v is a symmetry
of our platonic solid, then its group of symmetries will also split as the direct product
G+ × C2. Now this is a symmetry of the cube, so we have that the symmetry group of
the cube is the group of its rotational symmetries with C2, so

G+ × C2
∼= S4 × C2,

which matches our result from Chapter 5.

§8 Groups of Small Order

We are going to finish off by characterizing all groups up to order 8. We have already
found some of these, which we will review.

§8.1 Groups of Order Up To 7

So far we have established the following classifications.
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1. Prime Order. Then we only have the cyclic group.

2. Order 4. We have C4 or C2 × C2.

3. Order 6. We have C6 and D6.

§8.2 Groups of Order 8

To study groups of order 8, we’ll need to introduce a new group.

Definition 8.1 (Quaternions)

Consider the subset of matrices in GL2(C) given by

1 =

(
1 0
0 1

)
, i =

(
i 0
0 −i

)
, j =

(
0 1
−1 0

)
, k =

(
0 i
i 0

)
.

The set {±1,±i,±j,±k} forms the quaternion group, Q8.

The elements of this group satisfy the following relations:

(i) g4 = 1 for any g ∈ Q8.

(ii) (−1)2 = 1.

(iii) i2 = j2 = k2 = ijk = −1.

With that defined, let’s get on to classifying groups of order 8. First, a little lemma.

Lemma 8.2

If a finite group has all non-identity elements of order 2, then it is isomorphic to
C2 × C2 × · · · × C2.

Proof. Recall from example sheet 1 that G must be abelian, and |G| = 2n. If
|G| = 2, then G ∼= C2, and if |G| > 2, then choose a1 of order 2 in G. Then there
exists a2 6∈ 〈a1〉, and by the direct product theorem, 〈a1, a2〉 ∼= 〈a1〉×〈a2〉 ∼= C2×C2.
If this is isomorphic to G, then we are done. Otherwise, pick a3 6∈ 〈a1, a2〉, and we
get 〈a1, a2, a3〉 = 〈a1〉 × 〈a2〉 × 〈a3〉 ∼= C2 ×C2 ×C2. Continuing in this way, we get
G ∼= C2 × C2 × · · · × C2.

And now we can get to the heart of the matter.

Theorem 8.3 (Groups of order 8)

A group of order 8 is isomorphic to exactly one of C8, C4 × C2, C2 × C2 × C2, D8,
or Q8.

Proof. Note that C8, C4×C2 and C2×C2×C2 are all abelian and are distinguished
by the maximal order of an element in the group. Then D8 and Q8 are non-abelian,
and are distinguished from each other by the number of elements of order 2.

Not let G be a group such that |G| = 8. Then every element has order 1, 2, 4 or 8
by Lagrange. If there is an element of order 8, then G ∼= C8. If every element has
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order 2, then G ∼= C2 × C2 × C2 by our lemma. Now let’s assume that G has at
least one element g of order 4, and no element of order 8.

Now |G : 〈g〉| = 2, and thus if h 6∈ 〈g〉, G = 〈g〉 ∪ h〈g〉. If h2 ∈ h〈g〉, we would have
h ∈ 〈g〉, which is a contradiction. Thus h2 ∈ 〈g〉.

Now if h2 = g or g3, then g would have order 8, which is a contradiction. So
h2 = e or g2. We have 〈g〉 E G, thus hgh−1 = gk, for some k. We also have
g = h2gh−2 = hgkh−1 = (hgh−1)k = gk

2
, as g and h2 commute. This implies

k2 ≡ 1 (mod 4), giving two cases.

If k ≡ 1 (mod 4), then hgh−1 = g, implying G is abelian. If h2 = e, then G =
〈g〉 × 〈h〉 ∼= C4 × C2 by the direct product theorem. If h2 = g2, then (hg−1)2 = e,
so G = 〈g, hg−1〉 ∼= C4 × C2.

If k ≡ −1 (mod 4), then hgh−1 = g−1. Then if h2 = e, we have G = 〈g, h | g4 =
h2 = e, gh = hg−1〉 ∼= D8. Otherwise, h2 = g2, and G ∼= Q8.

Remark. We know that in an abelian group, every subgroup is normal. The converse
is not true, and Q8 is a counterexample.
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