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This course is a second course in Analysis and a first course in Topology. We will study
both concrete results over R and C concerning uniform convergence and continuity, and
we will also move to more abstract settings to discuss metric and topological spaces,
completeness, connectedness and compactness.

This article constitutes my notes for the ‘Analysis and Topology’ course, held in Michael-
mas 2021 at Cambridge. These notes are not a transcription of the lectures, and differ
significantly in quite a few areas. Still, all lectured material should be covered.
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§1 Uniform Convergence and Uniform Continuity

§1.1 Uniform Convergence

Recall the notion of convergence for a sequence in R or C:

Definition 1.1 (Convergence of a Sequence)

A sequence a1, a2, · · · ∈ R is said to converge to the limit a if given any ε > 0, we
can find an integer N such that |an − a| < ε for all n ≥ N . We write an → a as
n→∞

That is, given any ε, there is some point in the sequence after which the terms of the
sequence are ε close to a.
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Our aim is going to define a similar notion to make sense of fn → f , where fn is a
sequence of functions.

Definition 1.2 (Uniform Convergence)

A sequence of functions f1, f2, . . . with fi : S → R is said to converge uniformly
on S to a function f : S → R if given any ε > 0, we can find an integer N such that
|fn(x)− f(x)| < ε, for any x ∈ S.

Remark. In the above definition, our N can depend only on ε, and must be independent
of the particular choice of x ∈ S. This is why we call this uniform convergence – because
the property has to hold uniformly across the domain.

ε
f

fn

Equivalently, we could say that for all ε > 0 there’s some N ∈ N such that for all n ≥ N
we have supx∈S |fn(x)− f(x)| < ε.

The above definition implies that if we fix some value of x that f1(x), f2(x), . . . converges
to f(x). This implies that the function f is unique, due to the uniqueness of limits in R
and C. We sometimes call f the uniform limit.

Definition 1.3 (Pointwise Convergence)

We say that fn converges pointwise on S to f if fn(x)→ f(x) for every x ∈ S.

Remark. In this definition our ‘N ’ can depend on ε and x! This makes it a much weaker
notion than uniform convergence, and clearly uniform convergence implies pointwise
convergence.

Example 1.4 (Checking Uniform Convergence)

Consider the sequence of functions fn(x) = x2 · e−nx for n ∈ N and x ∈ R+. We
want to know if this sequence of functions converges uniformly on this domain.

Since pointwise convergence is implied by uniform convergence, we can first check
the pointwise limit exists and use that to specify f in our definition of uniform
convergence.

Fix x ≥ 0. Then x2e−nx → 0 as n → 0. So fn tends to 0 (the zero function)
pointwise on R+. We can now check if fn converges uniformly to the zero function.

2



Adam Kelly (October 26, 2021) Analysis and Topology

We can attempt to compute the quantity

sup
x≥0
|fn(x)− 0| = sup

x≥0
fn(x).

One approach would be to differentiate it, which would need some care. A better
way is to find an upper bound on |fn(x) − f(x)| which does not depend on x. In
this case we can bound

0 ≤ x2e−nx =
x2

1 + nx+ n2x2/2 + · · ·
≤ 2

n2
,

for all x ≥ 0. Thus supx≥0 fn(x) ≤ 2/n2 → 0 as n → ∞. So does indeed fn → 0
uniformly on R+.

Example 1.5 (Showing Uniform Convergence Doesn’t Hold)

Consider the sequence of functions fn(x) = xn for n ∈ N, over the domain [0, 1].

We can compute the limit as

xn → f(x) =

®
0 if 0 ≤ x < 1,

1 if x = 1.

This implies that supx∈[0,1] |fn(x)−f(x)| = 1. So this doesn’t tend to zero, and thus
the sequence of functions fn converges pointwise but not uniformly.

Alternatively, we could compute supx∈[0,1] fn(x) ≥ fn((1/2)1/n) = 1/2, which shows
that fn does not converge uniformly.

Remark. The statement “fn 6→ f uniformly on the domain S” means there exists some
ε such that for all N ∈ N, there’s some n ≥ N and x ∈ S such that |fn(x)− f(x)| ≥ ε.
In many cases when thinking about this, it’s almost easier just to negate the statement
symbolically.

We will now see that the uniform limit function retains certain properties from the
original sequence. For example, the uniform limit of continuous functions is continuous.

Theorem 1.6 (Continuity of the Uniform Limit)

Let S ⊆ R or C. Given a sequence of functions fn : S → R (or C), if fn is continuous
for all n, and fn → f uniformly on S, then f is continuous.

Proof. We will show that f is continuous at some arbitrary a ∈ S. Given ε > 0, there
exists some n ∈ N such that for x ∈ S we have |fn(x)−f(x)| < ε/3. Then since fn is
continuous, there exists δ > 0 such that |x−a| < δ implies that |fn(x)−fn(a)| < ε/3.
Then if x ∈ S and |x− a| < δ, we have

|f(x)− f(a)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(a)|+ |fn(a)− f(a)| ≤ ε,

as requireda.

aThis type of proof is called a ‘ε/3’ proof, or a 3ε proof depending on your outlook
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Remark. This result does not hold for just pointwise convergence. For example, con-
sider f(x) = xn on the interval [0, 1]. However, the set of points at which it can be
discontinuous is relatively small. Also this result does not hold for differentiability.

Another way of viewing this result is that it gives us a case where swapping limits is
okay1, that is

lim
x→a

lim
n→∞

fn(x) = lim
x→a

f(x) = f(a),

if fn converges uniformly to f .

We can also prove that boundedness is a property preserved by the uniform limit.

Lemma 1.7 (Uniform Limit of Bounded Functions is Bounded)

Assume that fn → f uniformly on some set S. If fn is bounded for every n, then so
is f .

Proof. Fix some n ∈ N such that for all x ∈ S we have |fn(x) − f(x)| < 1. Then
since fn is bounded, there is an M ∈ R such that |fn(x)| ≤M for all x ∈ S. Thus

|f(x)| ≤ |f(x)− fn(x)|+ |fn(x)| ≤ 1 +M,

so f is bounded.

Another natural property that’s preserved by the uniform limit is integrability. Since we
have f bounded, we can sensibly talk about the upper and lower sums, and just need to
check that Riemann’s criterion is satisfied.

Theorem 1.8 (Uniform Limit of Integrable Functions is Integrable)

Let fn : [a, b] → R be a sequence of integrable functions. If fn → f uniformly on
[a, b] then f is integrable and ∫ b

a
fn →

∫ b

a
f,

as n→∞.

Proof. Since every fn is integrable, they must all be bounded and hence f is also
bounded. Thus it suffices to check that Riemann’s criterion is satisfied.

Given ε > 0, we can fix an n ∈ N such that x ∈ [a, b] implies |fn(x) − f(x)| < ε.
Then since fn is integrable, there exists a dissection D = {x0, x1, . . . , xm} of [a, b]
such that SD(fn)− sD(fn) < ε.

Now, for each k ∈ {1, . . . ,m} and any x, y ∈ [xk−1, xk], we have

|f(x)− f(y)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(y)|+ |fn(y)− f(y)|
≤ |fn(x)− fn(y)|+ 2ε.

Then noting that we can write the difference between the supremum and infimum

1Generally, swapping limits is bad.
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of f in the interval [xk−1, xk] as

sup
x,y∈[xk−1,xk]

|f(x)− f(y)| ≤ sup
x,y∈[xk−1,xk]

|fn(x) + fn(y)|+ 2ε,

we can multiply by (xk − xk−1) and sum over k to get

SD(f)− sD(f) ≤ SD(fn)− sD(fn) + 2ε(b− a) ≤ ε(2(b− a) + 1),

so f is integrable.

Finally, we can write∣∣∣∣∣
∫ b

a
fn −

∫ b

a
f

∣∣∣∣∣ ≤
∫ b

a
|fn − f | ≤ (b− a) · sup

[a,b]
|fn − f | → 0

as n→∞.

Similar to the previous theorem, this result can be viewed as giving us a case where
swapping integrals (which are some form of limit) and limits is okay, so that∫ b

a
lim
n→∞

fn(x)dx = lim
n→∞

∫ b

a
fn(x)dx,

whenever fn → f uniformly.

From these results2, we obtain some results on how we can both integrate and differen-
tiate sufficiently nice functions term by term.

Theorem 1.9 (Term-wise Integration)

Let gn : [a, b] → R be a sequence of integrable functions. Then if
∑∞

n=1 gn(x)
converges uniformly on [a, b], the function x 7→

∑∞
n=1 gn(x) is integrable and∫ b

a

∞∑
n=1

gn(x)dx =
∞∑
n=1

∫ b

a
gn(x)dx.

Proof Sketch. Let fn be the sequence of partial sums, and notice that fn converging
uniformly implies that we can apply the previous theorem.

Theorem 1.10 (Term-wise Differentiation)

Let gn : [a, b] → R be a sequence of continuously differentiable functions. If∑n
j=1 gj(x) converges for any x ∈ [a, b] and

∑n
j=1 g

′
j converges uniformly as n→∞,

then
∑∞

j=1 gj converges uniformly to a continuously differentiable function g, and

g′(x) =
d

dx

Ñ
∞∑
j=1

gj(x)

é
=
∞∑
j=1

g′j(x).

2The derivation is straightforward, just consider the sequence of partial sums!
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Proof. We are going to try and solve g′ = h, where we let h(x) =
∑∞

k=1 g
′
n(x),

subject to the initial conditions g(c) =
∑∞

n=1 gn(c).

Since
∑∞

n=1 g
′
n(x) → h uniformly, and since g′n is continuous, we know that h is

continuous and thus integrable.

Now let λ =
∑∞

n=1 gn(c), and define

g(x) = λ+

∫ x

c
h(t)dt,

for x ∈ [a, b]. Since h is continuous, by the fundamental theorem of calculus, g is
differentiable with g′ = h, and moreover, g(c) = λ.

Again by the fundamental theorem of calculus, we also have

gk(x) = gk(c) +

∫ x

c
g′k(t)dt,

for x ∈ [a, b] and k ∈ N.

Now given ε > 0, there exists a positive integer N such that for n ≥ N we have∣∣∣∣∣λ−
n∑
k=1

gk(c)

∣∣∣∣∣ < ε

2
, and

∣∣∣∣∣h(t)−
n∑
k=1

g′k(t)

∣∣∣∣∣ < ε

2(b− a)
,

for t ∈ [a, b]. Then for x ∈ [a, b], we have∣∣∣∣∣g(x)−
n∑
k=1

gk(x)

∣∣∣∣∣ =

∣∣∣∣∣λ+

∫ x

c
h(t)dt−

n∑
k=1

Å
gk(c) +

∫ x

c
gk(t)dt

ã∣∣∣∣∣
≤
∣∣∣∣∣λ−

n∑
k=1

gk(c)

∣∣∣∣∣+

∣∣∣∣∣
∫ x

c

(
h(t)−

n∑
k=1

g′k(t)

)
dt

∣∣∣∣∣
≤ ε

2
+ |x− c| · ε

2(b− a)

≤ ε.

This shows that
∑n

k=1 gk(x)→ g(x) uniformly on [a, b], and we also know that g is
differentiable and g′ = h is continuous.

§1.2 The General Principle of Uniform Convergence

If a sequence xn ∈ R is Cauchy, that is, if for all ε > 0 there exists a positive integer N
such that m,n ≥ N implies |xm−xn| < ε, then the general principle of convergence says
that the sequence converges. Said differently, terms in a sequence getting arbitrarily
close together is necessary and sufficient for convergence.

A similar concept can be applied to sequences of functions.

Definition 1.11 (Uniformly Cauchy)

A sequence fn of functions on a set S is uniformly Cauchy if for all ε > 0 there
exists a positive integer N such that n,m ≥ N implies that for any x ∈ S we have
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|fm(x)− fn(x)| < ε.

From this, we get an analogue of the general principle of convergence for uniform con-
vergence.

Theorem 1.12 (General Principle of Uniform Convergence)

If fn is a uniformly Cauchy sequence of functions on a set S, then it converges
uniformly on S to some fn.

Proof. For any x ∈ S, the sequence of functions being uniformly Cauchy implies
that the sequence of reals fn(x) is Cauchy. Thus fn(x) converges for all x ∈ S, and
fn converges pointwise to some function f .

Given ε > 0, there is some positive integer N such that for all m,n ≥ N and all
x ∈ S, |fm(x)−fn(x)| < ε/2. We first fix x ∈ S, and fix n ≥ N . Since fm(x)→ f(x)
as m → ∞, we can choose m ∈ N such that |fm(x) − f(x)| < ε/2, and m ≥ N .
Then

|fn(x)− f(x)| ≤ |fn(x)− fm(x)|+ |fm(x)− f(x)| < ε,

as required, and thus fn converges uniformly to f .

This is an incredibly important theorem, and has lots of applications. One example is
proving the uniform convergence of certain power series, which we will see below.

Theorem 1.13 (Weierstrass M -test)

Let fn be a sequence of functions on a set S. Assume that for every n ∈ N there
is an Mn ∈ R+ such that |fn(x)| ≤ Mn for all x ∈ S. If

∑∞
n=1Mn converges, then∑∞

n=1 fn(x) converges uniformly on S.

Proof. Let Fn(x) =
∑n

k=1 fk(x) where x ∈ S and n ∈ N. For x ∈ S and n ≥ m we
have

|Fn(x)− Fm(x)| ≤
n∑

k=m+1

|fk(x)| ≤
n∑

k=m+1

Mk.

Now given ε > 0, we can choose N ∈ N such that
∑∞

k=N+1Mk < ε. Then for every
x ∈ S and n ≥ m ≥ N , we have

|Fn(x)− Fm(x)| ≤
∞∑

k=m+1

Mk < ε,

so Fn is uniformly Cauchy on S, and hence converges uniformly on S by the general
principle of uniform convergence.

Definition 1.14 (Open Disk)

We define the complex open disk D(a,R) to be the set

D(a,R) = {z ∈ C | |z − a| < R}.
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Example 1.15 (Uniform Convergence of
∑∞

n=1 z
n/n2)

We want to know if the power series
∑∞

n=1 z
n/n2 converges uniformly.

It’s easy to check that the radius of convergence is 1, so now we consider the terms
in the sequence fn(z) = zn/n2 where z ∈ D(0, 1).

For all such z, |fn(z)| ≤ 1/n2, and since
∑∞

n=1 1/n2 is convergent, by the M -test,
this power series converges uniformly on D(0, 1).

Of course, not every power series converges uniformly.

For example, the power series
∑∞

n=0 z
n has radius of convergence 1, and has bounded

partial sums for z ∈ D(0, 1). However, it converges to 1/(1 − z), which is not bounded
(and hence the convergence can’t be uniform, as otherwise boundedness would be pre-
served).

Despite this example, we can see that uniform convergence basically failed near the
radius of convergence, and we can still recover a nice result if we just move slightly away,
we can still get uniform convergence.

Theorem 1.16 (Uniform Convergence Near the Radius of Convergence)

Assume the power series
∑∞

n=0 cn(z − a)n has radius of convergence R. Then for
any r with 0 < r < R, the power series converges uniformly on D(a, r).

Proof. Fix some w ∈ C such that r < |w − a| < R. We set ρ = r
|w−a| , and we note

that ρ ∈ (0, 1).

Since
∑∞

n=0 cn(w − a)n converges, we have cn(w − a)n → 0 as n → ∞. Thus there
exists some M ∈ R+ such that |cn(w − a)n| ≤M for all n ∈ N.

Now if we take z ∈ D(a, r) and n ∈ N, we have

|cn(z − a)n| = |cn(w − a)n| ·
Å |z − a|
|w − a|

ãn
≤M

Å
r

|w − a|

ãn
≤Mρn.

Then since
∑∞

n=0Mρn is convergent, by the M -test we have
∑∞

n=0 cn(z − a)n con-
verging uniformly for z ∈ D(a, r).

This result allows us to use our results about uniform convergence to say things about
power series. For example:

1. Since a power series is the uniform limit of polynomials inside the radius of conver-
gence, and polynomials are continuous, we get that power series are also continuous
inside their radius of convergence.

2. Using our term-wise differentiability result, we get that power series can be differen-
tiated term-wise inside their power series, and that the power series

∑∞
n=0 cn(z−a)n

has derivative
∑∞

n=1 cn · n(z − a)n−1.

We saw previously that it’s possible for a power series to not converge uniformly on
its whole open disk of convergence. However, we the previous theorem showed that we
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could get arbitrarily close to the radius of convergence, and we’d still have some amount
of uniform convergence.

To be exact, consider a power series
∑∞

n=0 cn(z−a)n with radius of convergence R. Then
if we take some w ∈ D(a,R), and fix some r such that |w − a| < r < R, we can find
some δ > 0 such that |w − a|+ δ < r.

a

R

r

w
δ

Then if |z − w| < δ, |z − a| ≤ |z − w|+ |w − a| < δ + |w − a| < r, so D(w, δ) ⊂ D(a, r),
and thus

∑∞
n=0 cn(z − a)n converges uniformly on D(w, δ).

This inspires a helpful definition.

Definition 1.17 (Open)

A subset U of C is open if for all w ∈ U there exists δ > 0 such that D(w, δ) ⊂ U .

Definition 1.18 (Local Uniform Convergence)

Let U be an open subset of C and fn be a sequence of functions on U . We say that
fn converges locally uniformly on U if for all w ∈ U there exists some δ > 0
such that fn converges uniformly on D(w, δ) ⊂ U .

With this the result we discussed above can be stated as follows.

Theorem 1.19 (Local Uniform Convergence of Power Series)

A power series centered at a with radius of convergence R converges locally uniformly
on D(a,R).

We will return to this when we discuss compactness later on.

§1.3 Uniform Continuity

Recall the standard notion of continuity.

Definition 1.20 (Continuity)

Let A ⊆ C and f : A→ C. We say that f is continuous at a ∈ A if given any ε > 0
we can find a δ > 0 such that |f(a)− f(x)| < ε for all x ∈ A such that |x− a| < δ.

We say that f is continuous if it is continuous at every a ∈ A.

In the above definition, our δ is allowed to depend on both ε and x.
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Definition 1.21 (Uniform Continuity)

Let A ⊂ C and f : A→ C. We say that f is uniformly continuous on A if given
any ε > 0 we can find a δ > 0 such that for all x, y ∈ U we have |x−y| < δ implying
|f(x)− f(y)| < ε.

Here, we again impose this uniformity constraint, that is, δ is allowed to depend on ε
only.

It’s easy to see that uniform continuity implies continuity, but the converse doesn’t hold
in general.

Example 1.22 (Uniformly Continuous Function)

We will show that f(x) = 2x+ 17 is uniformly continuous over R.

Given ε > 0, let δ = ε/2. Then for all x, y ∈ R with |x−y| < δ we have |f(x)−f(y)| =
2|x− y| < ε, as required.

Example 1.23 (A Non-Uniformly Continuous Function)

The function f(x) = x2 over R is continuous, but not uniformly continuous.

Consider ε = 1. Then given some δ, let x > 1/δ and y = 1/δ + δ/2. Then we have
|x− y| < δ but |f(x)− f(y)| = 1 + δ2/4 > 1 = ε, so f is not uniformly continuous.

Here, our uniform continuity was shown to not hold by taking larger and larger x, which
forced the slope of the function to get too large for a given value of δ to be sufficient. It
turns out that this is the only failure point of uniform continuity, and indeed continuity
implies uniform continuity when we are working over a bounded interval.

The proof of this is quite natural – we use Bolzano-Weierstrass to show that a contra-
diction to uniform continuity is a contradiction to continuity.3

Theorem 1.24 (Continuous Functions are Uniformly Continuous)

Let f : [a, b]→ C be continuous. Then f is uniformly continuous

Proof. Suppose f was not uniformly continuous, that is, there exists some ε > 0
such that for all δ > 0 there is some x, y with |x−y| < δ such that |f(x)−f(y)| ≥ ε.

Taking δ = 1/n, we can find some sequences xn, yn ∈ [a, b] such that |xn−yn| < 1/n,
and |f(xn)−f(yn)| ≥ ε. Then by Bolzano-Weierstrass, we can find some convergent
subsequence xnj → x for some x ∈ [a, b]. But then |xnj − ynj | < 1/nj for all j, so
we must have ynj → x also.

Then |f(xnj )−f(ynj )| ≥ ε for every j, which implies that f(xnj ) and f(ynj ) cannot
converge to the same value. But then by continuity we have f(xnj ) → f(x) and
f(ynj )→ f(x), which is a contradiction. Thus f must be uniformly continuous.

With this result, we can prove the familiar result that continuous functions are integrable.

3Another argument which is more direct can be made using compactness, but we will look past this for
now.
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Theorem 1.25 (Continuous Functions are Integrable)

Let f : [a, b]→ R be continuous. Then f is Riemann integrable.

Proof. Given ε > 0, since f is uniformly continuous, there is some δ > 0 such that
|f(x)− f(y)| < ε/(b− a) whenever |x− y| < δ and x, y ∈ [a, b].

Now choose some integer n ≥ (b−a)/ε, and define the dissectionD = {x0, x1, . . . , xn}
with xj = a+ j(b− a)/n. Then we have

sup
x∈[xj−1,xj ]

f(x)− inf
x∈[xj−1,xj ]

f(x) ≤ ε

(b− a)
,

for all 1 ≤ j ≤ n, and thus

SD(f)− sD(f) =
n∑
j=1

(xj − xj−1)
ñ

sup
x∈[xj−1,xj ]

f(x)− inf
x∈[xj−1,xj ]

f(x)

ô
≤

n∑
j=1

b− a
n
· ε

b− a
= ε,

and thus f is Riemann integrable.

§2 Metric Spaces

§2.1 Defining Metric Spaces

In R and C, we measured the ‘closeness’ of two points x, y using |x − y|. We used this
throughout our study of analysis both in this course and previously, and possibly the
most important property of this was the triangle inequality,

|x+ z| ≤ |x+ y|+ |y + z|.

The triangle inequality acts, more or less, as saying that being close is transitive. That
is, if x is close to y, and y is close to z, then x is close to z.

In fact, we can abstract away quite naturally from the absolute value into a more general
setting in which a measure of distance has this property.

Definition 2.1 (Metric)

Let M be a set. A metric on M is a function d : M ×M → R such that

• Positivity. For all x, y ∈M , d(x, y) ≥ 0, with equality if and only if x = y.

• Symmetry. For all x, y ∈M , d(x, y) = d(y, x).

• Triangle inequality. For all x, y, z ∈M ,

d(x, z) ≤ d(x, y) + d(y, z).

11
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Definition 2.2 (Metric Space)

A metric space is a pair (M,d) where M is a set and d is a metric on M .

Example 2.3 (Metric Spaces on R)

The real line R is a metric space under the metric d(x, y) = |x − y|. In fact, any
subset of R is a metric space with the same metric.

Example 2.4 (Euclidean Space Rn)

In Rn, we can define the Euclidean norm of x ∈ Rn by

‖x‖ = ‖x‖2 =

(
n∑
k=1

|xk|2
) 1

2

.

This satisfies the triangle inequality ‖x+ y‖ ≤ ‖x‖+ ‖y‖. This ‘norm’ then induces
a metric on Rn

d(x, y) = d2(x, y) = ‖x− y‖2 =

(
n∑
k=1

|xk − yk|2
) 1

2

.

This metric is the Euclidean distance, and with it we get a metric space (Rn, d2)
called Euclidean space. This is the standard metric space on Rn.

Remark. We sometimes denote the n-dimensional real or complex Euclidean space by
`n2 . The Euclidean norm is called the `2-norm, and the corresponding Euclidean distance
is called the `2-metric.

Example 2.5 (Taxicab Metric)

It’s also possible to use the taxicab metric on Rn, given by

d(x, y) =

n∑
k=1

|xk − yk|.

This is also known as the `1-metric.

Example 2.6 (`∞ Metric)

In Rn or Cn, we can define the `∞ norm of x by

‖x‖∞ = max
1≤k≤n

|xk|,

and then we can define the `∞-metric by

d(x, y) = ‖x− y‖∞ = max
1≤k≤n

|xk − yk|.

We then get a metric space which we denote by `n∞.

12
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Example 2.7 (Uniform Metric)

Let S be a set, and let `∞(S) be the set of all bounded scalar functions on S. We
define the `∞-norm of f ∈ `∞(S) by

‖f‖ = ‖f‖∞ = sup
x∈S
|f(x)|,

also called the sup norm or the uniform norm. From this we can define d(f, g) =
‖f − g‖∞ called the uniform metric on `∞(S).

Example 2.8 (Lp-Norm)

Let C[a, b] be the set of all continuous functions defined on the closed and bounded
interval [a, b]. Then for p ≥ 1 we can define the Lp-norm of f ∈ C[a, b] by

‖f‖p =

Ç∫ b

a
|f(x)|pdx

å1/p

.

This definesa the Lp-metric, dp(f, g) = ‖f − g‖p.
aIf you want to check that dp satisfies the metric space axioms, you do need the Minkowski
inequality, which we will not discuss.

Example 2.9 (Discrete Metric)

Let M be any set. Then

d(x, y) =

®
0 if x = y,

1 if x 6= y.

defines the metric called the discrete metric, and (M,d) is called a discrete
metric space.

Example 2.10 (Word Metric)

Let G be a group generated by S ⊂ G, where e 6∈ S and x ∈ S implies x−1 ∈ S.
Then

d(x, y) = min{n ≥ 0 | there exists s1, . . . , sn ∈ S such that y = xs1 · · · sn}

defines the word metric.

Example 2.11 (p-adic Metric)

Fix a prime p ∈ N. We define

d(x, y) =

®
0 if x = y,

p−n if x 6= y where x− y = pnm.

defines a metric on Z called the p-adic metric.

13
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§2.2 Subspaces

As with many mathematical objects, it can be useful to discuss the substructure to a
metric space.

Definition 2.12 (Subspace)

Let (M,d) be a metric space and let N ⊂ M . Then d is a metric on N , and (N, d)
is a subspace of M .

Example 2.13 (Q is a subspace of R)

Q with the metric d(x, y) = |x− y| is a subspace of R.

Example 2.14 (C[a, b] is a subspace of `∞([a, b]))

Since every continuous function on a closed, bounded interval is bounded, it follows
that C[a, b] is a subset of `∞([a, b]), so C[a, b] with the uniform metric is a subspace
of `∞([a, b]).

Given two metric spaces, there is a number of natural construction of another metric
space which has those two metric spaces as subspaces.

Definition 2.15 (Product Space)

Let (M,d) and (M ′, d′) be metric spaces. Then each of the following defines a metric
on M ×M ′:

d1((x, x
′), (y, y′)) = d(x, y) + d′(x′, y′),

d2((x, x
′), (y, y′)) =

(
d(x, y)2 + d′(x′, y′)2

)1/2
,

d∞((x, x′), (y, y′)) = max{d(x, y), d′(x′, y′)}.

We denote the metric space (M ×M ′, dp) by M ⊕pM ′.

Remark. There is no canconical choice of which of {d1, d2, d∞} we take as the product
metric. Indeed, it’s straightforward to show that

d∞ ≤ d2 ≤ d1 ≤ 2d∞,

and later on when we discuss concepts such as convergence we will see that because of
this fact, the exact choice of metric doesn’t matter that much.

Of course, this construction extends naturally to any finite number of metric spaces.

§2.3 Convergence

Metric spaces give us a measure of closeness, and we know that in R and C that conver-
gence is really just a notion of a sequence getting close to some ‘limiting value’. Indeed,
convergence as we defined it before directly translates into the language of metric spaces.

14
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Definition 2.16 (Convergence)

Let (M,d) be a metric space. A sequence a1, a2, · · · ∈M is said to converge to the
limit a ∈M if given any ε > 0, we can find an integer N such that d(an, a) < ε for
all n ≥M . We write an → a as n→∞.

A straightforward but useful thing to note is that this definition implies an → a if and
only if d(an, a)→ 0 in R.

Now we need to go back to all of the theorems about convergence that were proved in
an earlier Analysis course and check if they still hold for a general Metric space (that is,
if they don’t really use the structure of R, apart from closeness).

Lemma 2.17 (Uniqueness of Limits)

If an → a and an → b in a metric space M , then a = b.

Proof. Assume that a 6= b. Given any ε > 0, we can find integers N1 and N2 such
that

d(an, a) ≤ ε, for all n ≥ N1

d(an, b) ≤ ε, for all n ≥ N2

Then letting ε = d(a, b)/3 and taking N = max{N1, N2}, we have by the triangle
inequality

d(a, b) ≤ d(a, an) + d(an, b) ≤ 2ε =
2

3
d(a, b)

for all n ≥ N . Thus we must have d(a, b) = 0, and a = b, contradicting our
assumption.

Lemma 2.18 (Convergence of Subsequences)

If an → a as n→∞ in a metric space M , and n(1) < n(2) < · · · , then an(j) → a as
j →∞.

Proof Sketch. Take the old proof from R and C and replace the absolute values with
the metric!

§2.4 Continuity

As with convergence, we also get a direct generalization of the notion of continuity.

Definition 2.19 (Continuity)

Let f : M →M ′ be a function between metric spaces (M,d) and (M ′, d′). Then for
a ∈ M , we say that f is continuous at a if given any ε > 0 we can find a δ > 0
such that d′(f(x), f(a)) < ε for all x ∈M such that d(x, a) < δ.

We say that f is continuous if f is continuous at a for all a ∈M .

15
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Proposition 2.20 (Sequence Definition of Continuity)

Let f : M → M ′ be a function between metric spaces, and let a ∈ M . Then f is
continuous at a if and only if xn → a in M implies that f(xn)→ f(a) in M ′.

We also keep the same standard properties of continuity as before.

Proposition 2.21 (Sums, Products, and Reciporicals of Continuous Functions)

Let f, g : M → M ′ be scalar functions on metric spaces M and M ′. Then the
following hold.

(i) If f and g are continuous at a, then so is their sum f + g.

(ii) If f and g are continuous at a, then so is their product fg.

(iii) If N = {x ∈ M | g(x) 6= 0}, then if f and g are continuous at a ∈ N , then so
is f/g.

Proposition 2.22 (The Composition of Continuous Functions is Continuous)

Let f : M → M ′ and g : M ′ → M ′′ with M,M ′,M ′′ all metric spaces. Then if f is
continuous at a ∈M and g is continuous at f(a), then g ◦ f is also continuous at a.

Example 2.23 (Constant Function)

Consider the constant function f : M → M ′ with f(x) = b for some b ∈ M ′. Then
f is continuous.

Example 2.24 (Identity Function)

Consider the identity function id : M →M . This is continuous at all a ∈M , as given
ε > 0 we can take δ = ε, and if d(x, a) < δ then d(id(x), id(a)) = d(x, a) < δ = ε.

Example 2.25 (Polynomials)

Using the examples above, we get that polynomials are always continuous.

Example 2.26 (Metrics are Continuous)

Let (M,d) be a metric space. Then d is a function between metric spaces, d :
M ⊕pM → R (where we take some p ∈ {1, 2,∞}).

Given v = (x, x′) and w = (w,w′) ∈M ⊕pM , then

|d(v)− d(w)| = |d(x, x′)− d(y, y′)| ≤ d(x, y) + d(x′, y′) = d1(v, w) ≤ 2dp(v, w)

So δ = ε/2 will do.

16
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Definition 2.27 (Isometric and Lipschitz)

Let f : M → M ′ be a function between metric spaces. Then f is isometric if for
all x, y ∈M we have d′(f(x), f(y)) = d(x, y).

We say that f is Lipschitz if there exists some c ∈ R+ such that d′(f(x), f(y)) ≤
cd(x, y).

Definition 2.28 (Uniform Continuity)

Let f : M →M ′ be a function between metric spaces. We say that f is uniformly
continuous if given ε > 0, there exists some δ > 0 such that for all x, y ∈ M with
d(x, y) < δ we have d′(f(x), f(y)) < ε.

We can easily see that f isometric implies that it’s Lipschitz, and f Lipschitz implies
that it’s uniformly continuous. Also, if f is isometric then it must be injective (but not
necessarily surjective). If f is also surjective then we call it a isometry.

If there exists an isometry between two metric spaces M and M ′, we say that they are
isometric.

Example 2.29

Let (M,d) and (M ′, d′) be metric spaces, and fix some y ∈ M ′. Then if we define
f : M → M ⊕p M ′ by f(x) = (x, y), we have dp(f(x), f(z)) = dp((x, y), (x, z)) =
d(x, z). So f is an isometry, and M × {y} is an isometric copy of M in the space
M ⊕pM ′.

§2.5 The Topology of a Metric Spaces

While we will discuss topology and topological spaces later, it’s worth looking at a few
of the core ideas in the context of metric spaces.

It seems that there are some concepts in metric spaces that don’t really rely on the
metric, just about the closeness of points. The point of this section is looking to see
exactly what type of relations are these, so that we can generalize them to a setting
where we don’t use a metric.

We begin with the familiar concept of an open ball.

Definition 2.30 (Open Ball)

Let M be a metric space, x ∈ M and r > 0. The open ball in M of center x and
radius r is the set Dr(x) given by

Dr(x) = {y ∈M | d(x, y) < r}.

The idea of open balls is a natural one, and it even fits naturally into some of our previous
definitions.

For example, we say that xn → x in M if and only if for all ε > 0, there is some positive
integer N such that n ≥ N implies that xn ∈ Dε(x).

17



Adam Kelly (October 26, 2021) Analysis and Topology

Similarly, for a function f : M → M ′ we say that f is continuous at x ∈ M if and only
if for all ε > 0 there exists some δ > 0 such that f(Dδ(x)) ⊂ Dε(f(x)).

Definition 2.31 (Closed Ball)

Let M be a metric space, x ∈M and r > 0. The closed ball in M of center x and
radius r is the set Br(x) given by

Br(x) = {y ∈M | d(x, y) ≤ r}.

Example 2.32 (Open and Closed Ball in R)

In R, we have Dr(x) = (x− r, x+ r), and Br(x) = [x− r, x+ r].

We now move to define some concepts that will be a little less straightforward, but
should come together later on as we discuss more topology.

Definition 2.33 (Neighborhood)

Let M be a metric space, and let U ⊂ M . For x ∈ M , we say that U is a neigh-
borhood of x in M if there exists some r > 0 such that Dr(x) ⊂M .

Definition 2.34 (Open)

We say that U is open in M if for all x in U there is some r > 0 such that Dr(x) ⊂ U .
That is, if U is a neighborhood for all of its points.

Example 2.35 (Upper Half of the Complex Plane is Not Open)

Consider the set H = {z ∈ C | Im z ≥ 0}. Then let w ∈ H, and let δ = Imw. If
δ > 0, then Dδ(w) ⊂ H, and if δ = 0, then for all r > 0 Dr(w) 6⊂ H. Thus H is not
open.

We commonly use the seeming tautological fact that open balls are open.

Lemma 2.36

Open balls are open.

Proof. Consider some open ball Dr(x) in a metric space M . Then let y ∈ Dr(x),
and set δ = r − d(x, y). Then δ > 0, and if z ∈ Dδ(y) then

d(z, x) ≤ d(z, y) + d(y, x) < δ + d(x, y) = r,

so z ∈ Dr(x). This shows that Dδ(y) ⊂ Dr(x).

Corollary 2.37

Let M be a metric space, U ∈M and x ∈M . Then U is a neighborhood of x if and
only if there exists an open subset V of M such that x ∈ V ⊂ U .
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Proof Sketch. Check definitions.

This notion of neighborhoods and open sets is sufficient to describe both convergence
and continuity in a metric space on its own.

Proposition 2.38 (Convergence using Open Sets & Neighborhoods)

In a metric space M , the following are equivalent.

(i) xn → x;

(ii) For all neighborhoods U of x in M , there exists some positive integer N such
that n ≥ N implies xn ∈ U ;

(iii) For all open subsets U of M with x ∈ U , there is a positive integer N such
that for all n ≥ N we have xn ∈ U .

Proof. (i) implies (ii). Let U be a neighborhood of x in M . Then by definition
there exists some ε > 0 such that Dε(x) ⊂ U . Then since xn → x, there’s an N ∈ N
such that n ≥ N implies d(xn, n) < ε, that is, xn ∈ Dε(x).

(ii) implies (iii). This is clear since any open set U with x ∈ U is a neighborhood
of x.

(iii) implies (i). Given some ε > 0, U = Dε(x) is open and x ∈ U . Then by (iii)
there’s an N ∈ N such that n ≥ N implies xn ∈ U , that is, d(xn, x) < ε.

Proposition 2.39 (Local Continuity using Open Sets & Neighborhoods)

Let f : M → M ′ be a function between metric spaces, and let x ∈ M . Then the
following are equivalent:

(i) f is continuous at x;

(ii) For all neighborhoods V of f(x) in M ′, there exists a neighborhood U of x in
M such that f(U) ⊂ V ;

(iii) For all neighborhoods V of f(x) in M ′, f−1(V ) is a neighborhood of x in M .

Proof. (i) implies (ii). Let V be a neighborhood of f(x) in M ′. Then by definition
there exists some ε > 0 such that Dε(f(x)) ⊂ V . Since f is continuous at x, there
exists δ > 0 such that f(Dδ(x)) ⊂ Dε(f(x)). Then U = Dδ(x) is a neighborhood of
x in M , and f(U) ⊂ V .

(ii) implies (iii). Let V be a neighborhood of f(x) in M ′. Then by (ii) there is a
neighborhood U of x in M such that f(U) ⊂ V . Then U ⊂ f−1(V ), and since U is
a neighborhood of x in M , there is some r > 0 with Dr(x) ⊂ U ⊂ f−1(V ). Thus
f−1(V ) is a neighborhood of x in M .

(iii) implies (i). Given ε > 0, V = Dε(f(x)) is a neighborhood of f(x) in V . By (iii),
f−1(V ) is a neighborhood of x in M . So there exits δ > 0 with Dδ(x) ⊂ f−1(V ).
Then f(Dδ(x)) ⊂ V = Dδ(f(x)).
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Proposition 2.40 (Global Continuity using Open Sets & Neighborhoods)

Let f : M → M ′ be a function between metric spaces. Then the following are
equivalent:

(i) f is continuous;

(ii) f−1(V ) is open in M for all open subsets V of M ′.

Proof. (i) implies (ii). Let V be open in M ′. Let x ∈ f−1(V ). Then f(x) ∈
V . Since V is open, there’s some ε > 0 such that Dε(f(x)) ⊂ V . Since f is
continuous at x, there’s a δ > 0 such that f(Dδ(x)) ⊂ Dε(f(x)). Therefore Dδ(x) ⊂
f−1(Dε(f(x))) ⊂ f−1(V ). Thus f−1(V ) is open in M .

(ii) implies (i). Let x ∈ M , and let ε > 0. Then V = Dε(f(x)) is open in M ′. By
(ii) f−1(V ) is open in M , also x ∈ f−1(V ) and f(x) ∈ V . Then by definition there’s
a δ > 0 such that Dδ(x) ⊂ f−1(V ), so f(Dδ(x)) ⊂ V = Dε(f(x)).

We can now write down what the topology of a metric space is. We are going to study
topology in general later on, but we can use some properties that occur here to inform
how we define things more generally afterwards.

Definition 2.41 (Topology of a Metric Space)

The topology of a metric space M is the family of all open subsets of M .

Proposition 2.42 (Basic Properties)

The topology of a metric space satisfies the following.

(i) ∅ and M are open.

(ii) If Ui is open in M for all i in some index set I, then
⋃
i∈I Ui is open in M .

(iii) U, V open in M implies U ∩ V open in M .

Proof. Part (i). This is clear.

Part (ii). Given x ∈
⋃
i∈I Ui, then there’s some i0 ∈ I with x ∈ Ui0 . Then Ui0 is

open, so by definition there’s an r > 0 with Dr(x) ⊂ Ui0 ⊂
⋃
i∈I Ui.

Part (iii). Given x ∈ U ∩ V , since U is open and x ∈ U , there’s an r > 0 with
Dr(x) ⊂ U , and since V is open and x ∈ V , there’s an s > 0 with Ds(x) ⊂ V . Then
letting t = min{r, s}, we have t > 0 and Dt(x) = Dr(x) ∩Ds(x) ⊂ U ∩ V .

Definition 2.43 (Closed)

A subset A of a metric space M is closed in M if for every sequence xn ∈ A that
is convergent in M , we have limn→∞ xn ∈ A.

Lemma 2.44

Closed balls are closed.
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Proof. Consider Br(x) = {y ∈M | d(y, x) ≤ r} in a metric space M , and a sequence
xn ∈ Br(x) such that xn → z. We need to show that z ∈ Br(x). We have

d(z, x) ≤ d(z, xn) + d(xn, x)

≤ d(z, xn) + r → r

as n→∞. Thus d(z, x) ≤ r, and hence z ∈ Br(x).

Example 2.45 (Closed but Not Open, and Open but Not Closed Sets)

The set [0, 1] = B 1
2
(1/2) is closed in R. [0, 1] is not open, for example Dr(0) 6⊂ [0, 1]

for any r > 0.

The set (0, 1) = D 1
2
(1/2) is open, but it is not closed. Take 1/(n+ 1) ∈ (0, 1) for all

n ∈ N. Then 1/(n+ 1)→ 0 in R but 0 6∈ (0, 11).

Example 2.46 (An Open and Closed Set)

R is open and closed in R.

Example 2.47 (A Neither Open or Closed Set)

The set (0, 1] in R is neither open nor closed.

Lemma 2.48 (Relating Closed and Open)

Let A be a subset of a metric space M . Then A is closed in M if and only if M\A
is open in M .

Proof. Assume A is closed, and that M\A is not open. Then there exists x ∈M\A
such that for all r > 0 we have Dr(x) 6⊂ M\A. Hence for all n there exists xn ∈
D1/n(x) ∩ A. Then d(xn, x) < 1/n → 0, so xn → x in M and xn ∈ A for all n,
which contradicts that A is closed.

Now suppose that M\A is open but A is not closed. Then there exists some sequence
xn in A such that xn → x in M but x 6∈ A. Since x ∈M\A and M\A is open, there
exists ε > 0 with Dε(x) ⊂M\A. Then since xn → x, there is some N ∈ N such that
for all n ≥ N we have x∈Dε(x), and hence xn ∈M\A, which is a contradiction.

We previously met isometries, which were maps between metric spaces that preserved
the distance function. Now that we are trying to look slightly away from metrics and
more towards open sets and neighborhoods, it’s natural to think of a new definition of
a function between metric spaces that preserves open sets.

Definition 2.49 (Homeomorphism)

A map f : M →M ′ between metric spaces is a homeomorphism if f is a bijection,
and f and f−1 are both continuous.

21



Adam Kelly (October 26, 2021) Analysis and Topology

Equivalently, f is a homeomorphism if for all open sets V in M ′, f−1(V ) is open in
M , and for all open sets U in M , f(U) is open in M ′.

If there is a homeomorphism between M and M ′, we say that M and M ′ are home-
omorphic.

Example 2.50

The metric spaces (0,∞) and (0, 1) are homeomorphism with the homeomorphism
x 7→ 1/(x+ 1) and inverse x 7→ 1/x− 1.

While is is true that every isometry is a homeomorphism, the converse is absolutely false.

We will say that two metrics on a set are equivalent if they induce the same topology.

Definition 2.51 (Equivalent Metrics)

Let d and d′ be metrics on a set M . We say that d and d′ are equivalent, denoted
d ∼ d′, if they define the same topology on M . That is, for U ⊂ M , U is open in
(M,d) if and only if U is open in (M,d′).

So d ∼ d′ if and only if id : (M,d)→ (M,d′) is a homeomorphism.

Note that if d ∼ d′, then (M,d) and (M,d′) have the same convergent sequences and
the same continuous maps.

Definition 2.52 (Uniformly and Lipschitz Equivalent)

Let d and d′ be metrics on a set M . We say that d and d′ are uniformly equivalent
if id : (M,d) → (M,d′) and id : (M,d′) → (M,d) are uniformly continuous, and
write d ∼u d′.

We will say d and d′ are Lipschitz equivalent if these functions are Lipschitz, and
write d ∼Lip d′.

Note that d ∼Lip d′ if and only if there exists a > 0 and b > 0 such that

ad(x, y) ≤ d′(x, y) ≤ bd(x, y),

and also note that d ∼Lip d′ implies d ∼u d′ implies d ∼ d′.

Example 2.53

Given a metric space (M,d), d′(x, y) = min{1, d(x, y)} defines a metric on M , and
d′ ∼u d.

Example 2.54

On a product space M × M ′, the metrics d1, d2 and d∞ are pairwise Lipschitz
equivalent.
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Example 2.55

On C[0, 1], the L1-metric and the uniform metric are not equivalent.

We will return to these topological ideas later on.

§3 Completeness and the Contraction Mapping Theorem

§3.1 Completeness

In R and C that every Cauchy sequence is convergent. In what spaces is this true?

Definition 3.1 (Cauchy Sequence)

A sequence xn in a metric space M is Cauchy if given ε > 0, there’s some positive
integer N such that n,m ≥ N implies that d(xn, xm) < ε.

Definition 3.2 (Bounded)

A sequence xn in a metric space M is bounded if there exists some z ∈ M and
r > 0 such that for all n w have xn ∈ Br(z).

Lemma 3.3 (Convergent Implies Cauchy Implies Bounded)

Every convergent sequence is Cauchy, and every Cauchy sequence is bounded.

Proof. Let xn be a sequence in metric space M .

Suppose xn is convergent in M , and let x = limn→∞ xn. Given ε > 0, there is some
positive integer N such that n ≥ N implies d(xn, x) < ε/2. Then for all m,n ≥ N ,
d(xm, xn) ≤ d(xm, x)+d(x, xn) < ε. Thus if a sequence converges, then it’s Cauchy.

Now assume that xn is Cauchy in M . Then there’s a positive integer N such that
for all m,n ≥ N we have d(xm, xn) < 1. In particular, d(xn, XN ) < 1 for n ≥ N ,
that is, xn ∈ B1(xN ) for n ≥ N . So let r = max{d(x1, xN ), . . . , d(xN−1, xN )}. Then
xn ∈ Br(xN ) for all n ∈ N, and so xn is bounded.

In general, being bounded does not imply that a sequence is Cauchy (for example, take
the sequence 0, 1, 0, 1, . . . ).

Slightly more subtle is that being Cauchy doesn’t imply convergence, and we can con-
struct a somewhat silly example. For example, xn = 1/n is Cauchy but doesn’t converge
in the metric space (0,∞). It seems that this example works because there’s something
‘missing’ from the metric space – the limit of a sequence. Indeed, in this section we
will care about metric spaces where such an implication does hold, in ‘complete’ metric
spaces.

Definition 3.4 (Completeness)

A metric space M is complete if every Cauchy sequence in M converges in M .
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Example 3.5

R and C are complete.

Proposition 3.6

If M and M ′ are complete metric spaces, then so is M ⊕pM ′.

Proof. Omitted.

Example 3.7

Rn and Cn are complete in the `p-metric.

Theorem 3.8 (Completeness of a Function Space)

Let S be any set. Then `∞(S) is complete in the uniform metric D.

Proof. Let fn be a Cauchy sequence in `∞(S). Then given ε > 0, there is some
positive integer N such that for all n,m ≥ N we have

D(fm, fn) = sup
x∈S
|fm(x)− fn(x)| < ε.

So fn is uniformly Cauchy. By the general principle of uniform convergence, fn
converges uniformly to some function f on S. We also know that f is bounded, so
f ∈ `∞(S). Now given ε > 0, there’s some N ∈ N sich that for all n ≥ N and x ∈ S
we have

|fn(x)− f(x)| < ε,

and thus for n ≥ N we have supx∈S |fn(x) − f(x)| = D(fn, f) ≤ ε, so fn → f in
(`∞(S), D).

Proposition 3.9 (Completeness of a Subspace)

Let N be a subspace of a metric space M .

(i) If N is complete, then N is closed in M .

(ii) If M is complete and N is closed in M , then N is complete.

Proof. Part (i). Let xn be a sequence in N and assume that xn → x in M . We
then need x ∈ N . Since xn is convergent in M , xn must also be Cauchy in M , and
thus it is Cauchy in N . Then since N is complete, we must have xn → y ∈ N . But
then xn → y ∈M , and by uniqueness of limits, y = x and x ∈ N .

Part (ii). Let xn be a Cauchy sequence in N . Then xn is Cauchy in M . Since M is
complete, xn → x in M for some x ∈ M . Since M is closed in M , we have x ∈ N .
So xn → x in N .
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Theorem 3.10

Let (M,d) be a metric space, and define

Cb(M) = {f ∈ `∞(M) | f is continuous}.

This is a subspace of `∞(M) in the uniform metric D.

Then Cb(M) is complete in the uniform metric.

Proof. It suffices to show that Cb(M) is closed in `∞(M). Let fn be a sequence in
Cb(M), and assume that fn → f in `∞(M). We need to show that f is continuous.

Given some a ∈ M and ε > 0, since fn → f in `∞(M), we can fix an n ∈ N such
that D(fn, f) < ε. Since fn is continuous at a, there’s a δ > 0 such that for all
x ∈ M we have d(x, a) < δ implying |fn(x) − fn(a)| < ε. Hence for all x ∈ M if
δ(x, a) < δ then

|f(x)− f(a)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(a)|+ |fn(a)− f(a)|
≤ 2D(fn, f) + |fn(x)− fn(a)|
≤ 3ε.

Corollary 3.11

C[a, b], the space of continuous functions on the closed bounded interval [a, b] is
complete in the uniform metric.
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