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§1 Vector Spaces

§1.1 Vector Spaces and Subspaces

Linear algebra is, somewhat obviously, primarily about studying objects that are linear
in nature. The objects we really care about are vector spaces, settings in which we
can add elements and multiply by scalars. We are also going to consider linear maps,
functions on vector spaces which preserve that linear structure – but more on that later.

Throughout the following discussion (and this course), F is going to denote an arbitrary
field1

Definition 1.1 (F-Vector Space )

An F-vector space is an abelian group (V,+) together with a function F×V → V ,
written (λ, v) 7→ λv such that the following axioms hold:

(i) Distributivity in V . λ(v1 + v2) = λv1 + λv2,

(ii) Distributivity in F. (λ1 + λ2)v = λ1v + λ2v,

(iii) Associativity. λ(µv) = (λµ)v,

(iv) Identity. 1v = v.

We usually call elements of V vectors and elements of F scalars. The identity element
in V is usually called the zero vector, and is written 0V (or just 0 if the context is clear).

If F is R or C, we use the terms ‘real vector space’ and ‘complex vector space’, since
they’re so common.

Example 1.2 (Examples of Vector Spaces)

(i) The set of triples
{(x, y, z) | x, y, z ∈ R}

forms a real vector space called R3, because you can add any two triples
component wise.

(ii) The set
Q[
√

2] = {a+ b
√

2 | a, b ∈ Q}

is a Q-vector space, where we add elements and scale by rational numbers in
the obvious way.

(iii) The set C[0, 1] of all continuous functions f : [0, 1] → R forms a real vector
space.

As with many new objects, it’s helpful to be able to discuss its substructure. In the
case of a vector space V , there’s a pretty natural notion for what it means for a subset
U ⊆ V to still act like a vector space.

1A field F is a set F equipped with two operations + (‘addition’) and · (‘multiplication’). We require F
with addition to form an abelian group, and multiplication must be associative and have an identity
element 1. We also require every element except 0 to have an inverse with respect to multiplication,
and multiplication must be distributive over addition.

Informally, you can think of a field as something you can do arithmetic in.
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Definition 1.3 (Subspace)

Let V be a F-vector space. A subset U ⊆ V is a subspace of V if U is also an
F-vector space. If U is a subspace of V , we will write U ≤ V .

Example 1.4 (Examples of Subspaces)

(i) The set of vectors {(x, y, z) | x, y, z ∈ R, x+ y + z = 0} is a subspace of R3.

(ii) The set of polynomials with terms of even degree {a0 + a2x
2 + a4x

4 + · · · +
a2kx

2k | α2i ∈ R, k ∈ N} is a subspace of R[X], the vector space of polynomials
with coefficients in R.

As you would expect, checking that something is a subspace is usually easier than check-
ing all of the axioms for a vector space. In particular, to check that U is a subspace of
an F-vector space V , you can just check that the following hold:

• Zero vector2. 0V ∈ U ,

• Closure under addition. u1, u2 ∈ U to imply u1 + u2 ∈ U ,

• Closure under scaling. λ ∈ F and u ∈ U to imply λu ∈ U .

There are various ways in which we can manipulate subspaces, for example we can take
the intersection of two subspaces, and we will get back another subspace.

Proposition 1.5 (Intersecting Subspaces)

Let U,W ≤ V . Then U ∩W ≤ V .

Proof. Since U and V are both subspaces of V , we have 0V ∈ U ∩ V , and also
since they are both closed under addition and scaling, u1, u2 ∈ U ∩W implies that
u1 + u2 ∈ U ∩W , and λ ∈ F implies λu ∈ U ∩W . Thus U ∩W is a subspace of
V .

However we can’t manipulate subspaces however we want and expect magic. For exam-
ple, the union of two subspaces is generally not a subspace, as it is typically not closed
under addition. In fact, the union is only ever a subspace if one of the subspaces is
contained in the other.3

We can however try to ‘complete’ the union so that it becomes a subspace.

Definition 1.6 (Sum of Subspaces)

Let V be a vector space over F, and let U,W ≤ V . We define the sum of U and W
to be the set

U +W = {u+ w | u ∈ U,w ∈W}.

This definition immediately forces U +W ≤ V , and indeed it is the minimal such space
(in that any subspace of V containing both U and W must also contain U +W ).

2You may wonder why we need to check this when we already check that we are closed under scaling.
To see why, notice that we still have to ensure U is non-empty!

3There are some more exercises of this flavour on the example sheet.
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§1.2 Quotient Spaces

Since a vector space V forms an abelian group (V,+), we are able to take the quotient
by any subspace U ≤ V .

Definition 1.7 (Quotient Space)

Let V an F-vector space, and let U ≤ V . The quotient space V/U is the abelian
group V/U equipped with the scalar multiplication F ×V/U → V/U written (λ, v+
U) 7→ λv + U .

With this definition, we need to check that this scalar multiplication operation is well
defined. Indeed, if v1 + U = v2 + U then

v1 − v2 ∈ U
=⇒ λ(v1 − v2) ∈ U

=⇒ λv1 + U = λv2 + U ∈ V/U,

so our operation is indeed well defined.

As you would expect, taking a quotient gives you back a vector space.

Proposition 1.8 (Quotient Spaces are Vector Spaces)

V/U is an F-vector space.

Proof Sketch. Check definitions (most properties are inherited from V being a vector
space).

§1.3 Basis and Dimension

You are likely informally familiar with the idea of dimension, a measure how much
freedom exists in a system. Dimensionality is a rather natural concept with respect to
vector spaces, but we will need to move through some technicalities to establish the
results we want.

To discuss the amount of freedom, we first need a way to quantify what it means for a set
of vectors to be independent from one another. This is the idea of linear independence.

Definition 1.9 (Linear Independence)

We say that {v1, . . . , vn} ∈ V are linearly independent if

λ1v1 + λ2v2 + · · ·+ λnvn = 0

implies that λ1 = · · · = λn = 0.

Remark. For an infinite subset S ⊆ V , we say it’s linearly independent if every finite
subset is linearly independent.

If a set of vectors is not linearly independent, then there’s some vector in that set that
can be written as a linear combination of the others – so it’s not independent of them!
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The next idea we need to pin down is being able to see if our set of vectors can ‘generate’
the rest of our vector space.

Definition 1.10 (Span)

Let V be a vector space over F, and let S ⊂ V . We define the span of S, 〈S〉 to be
the set of finite combinations of elements of S.

If 〈S〉 = V , then we say S is spans or generates V .

Remark. By convention, we also take 〈∅〉 = {0}. An equivalent definition is that 〈S〉
is the smallest subspace of V that contains S.

Example 1.11 (Quadratic Polynomials)

Let V be the vector space of quadratic polynomials over R,

V = {ax2 + bx+ c | a, b, c ∈ R}.

Then the subset S ⊆ V with S = {1, x, x2} spans V .

Putting these two concepts together gives us the idea of bases, which are sets of linearly
independent vectors that span a vector space.

Definition 1.12 (Basis)

A subset S of a vector space V is a basis if S is a set of linearly independent vectors
that span V .

Example 1.13 (Basis for Rn)

The canonical basis of Rn is the set of vectors

S =




1
0
...
0

 ,


0
1
...
0

 , . . . ,


0
0
...
1


 .

Importantly, this is not the only basis of Rn, just one that is quite convenient most
of the time.

Remark. Note that in the definition of a basis there is no requirement for the set of
basis vectors S ⊆ V to be finite – only that any element in V must be representable
using finitely many elements of S.

We’d intuitively want to say that the dimension of a vector space is the number of
elements in its basis. However, we first need to check that this is a well defined notion.
We can at this point distinguish between finite and infinite dimensional vector spaces at
this point though4.

4Can you see why this is well defined already?
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Definition 1.14 (Finite & Infinite Dimension)

We say a vector space V is finite dimensional if it has a finite basis, and we say
it is infinite dimensional otherwise.

The next result about bases we will prove is that they induce unique representations of
elements in the vector space.

Lemma 1.15 (Unique Representations with a Basis)

Let V be a vector space over F. Then S ⊆ V is a basis of V if and only if any vector
v ∈ V can be written uniquely as a linear combination of elements v1, . . . , vn ∈ S.

Proof. Suppose that S was a basis for V . Then if v ∈ V can’t be written as such
a linear combination, then S wouldn’t not span V , contradicting it being a basis.
Also, if v can be written as such a linear combination non-uniquely, then taking

v = λ1v1 + · · ·+ λnvn = µ1v1 + · · ·+ µnvn.

where λi 6= µi for at least one value of i, we’d have 0 = v − v = (λ1 − µ1)v1 + · · ·+
(λn − µn)vn, and at least one of these coefficients must be non-zero, contradicting
S being linearly independent.

Alternatively, if any element in V can be written uniquely, then if v1, . . . , vn ∈ S
with λ1v1 + · · ·λnvn = 0 implies that λ1 = · · · = λn = 0, giving that S must be
linearly independent. Since S is also spanning by definition, we see that it therefore
must be a basis of V .

With that out of the way, we can prove some results about finite dimensional vector
spaces which will help us get towards our definition of dimension.

Lemma 1.16 (Spanning Sets Contain a Basis)

Let V be a finite dimensional vector space, and let S = {v1, . . . , vn} be a set of
vectors that spans V . Then there is some subset of S that is a basis of V .

Proof. If {v1, . . . , vn} is linearly independent, then we are done. If it’s not, then
(up to reordering) we have vn ∈ 〈{v1, . . . , vn−1}〉. But then 〈{v1, . . . , vn}〉 =
〈{v1, . . . , vn−1}〉, so we can not include vn in our subset. Not including elements in
this way repeatedly, since there is finitely many elements in S, we must eventually
get a linearly independent set that still spans V .

Theorem 1.17 (Steinitz Exchange Lemma)

Let V be a finite dimensional vector space. Then if {v1, . . . , vm} is a set of linearly
independent vectors, and {w1, . . . , wn} spans V , then

(i) m ≤ n

(ii) up to reordering, {v1, . . . , vm, wm+1, . . . , vn} spans V .
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Proof. We will prove this by induction. Suppose we have replaced ` ≥ 0 of the wi,
and that

〈{v1, . . . , v`, w`+1, . . . , wn}〉 = V.

If m = `, we are done, so assume that ` < m. Then since this set is spanning, we
can write v`+1 ∈ V as

v`+1 = α1v1 + · · ·+ α`v` + β`+1w`+1 + · · ·+ βnwn.

Since having βi = 0 for all `+ 1 ≤ i ≤ n would violate linear independence, we can
suppose without loss of generality that β`+1 6= 0. We also note that this implies
that `+ 1 ≤ n, as otherwise this would not be possible.

Then w`+1 ∈ 〈{v1, . . . , v`+1, w`+2, . . . , wn}〉, and this set spans V .

Repeating this process, we will be done after m steps, and we have also shown (at
the final step) that m ≤ n.

Corollary 1.18 (Dimension)

Let V be a finite dimensional vector space over F. Then any two bases of V have the
same number of elements, called the dimension of V , denoted dimV or dimF V .

Proof. Immediate by Steinitz exchange lemma.

So using Steinitz exchange lemma we have finally been able to pin down exactly what is
meant by the dimension of a vector space – it’s the size of it’s basis. This should match
up to the intuitive idea of ‘freedom’ that you had at the start of this section. Freedom
in a vector space comes from varying coefficients, and in a basis we can both freely vary
coefficients and also reach any element in a vector space uniquely, so the number of
independent parameters really is the size of the basis.

Steinitz also gives us a few useful results for free.

Corollary 1.19

Let V be a vector space over F with finite dimension n = dimV . Then

(i) Any independent set of vectors has at most n elements, with equality if and
only if it’s a basis.

(ii) Any spanning set has at least n elements, with equality if and only if it’s a
basis.

Proof. Immediate by Steinitz exchange lemma.

Working with basis and dimension can make the study of vector spaces much easier. For
example, Steinitz allows us nicely extend bases. That is,

If we have a vector space V , and a subspace U ≤ V ,
then we can pick a nice basis {u1, . . . , u`} of U , and
extend it to a basis {u1, . . . , u`, u`+1, . . . , un} of V .

Working with ideas like this can make many results easier to prove, as we will see in the
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following propositions.

Proposition 1.20 (Dimension of the Sum of Subspaces)

Let U , W be subspaces of a vector space V . if U and W are finite dimensional, then
so is U +W , and dimU +W = dimU + dimW − dimU ∩W .

Proof. Pick a basis {v1, . . . , va} of U ∩W , and extend by Steinitz exchange lemma
to a basis {v1, . . . , va, u1, . . . , ub} of U , and to a basis {v1, . . . , va, w1, . . . , wc} of W .

It suffices to prove that {v1, . . . , va, u1, . . . , ub, w1, . . . , wc} is a basis of U +W .

Clearly this set of vectors spans U + W , so we just need to check that they are
linearly independent. Suppose that

a∑
i=1

αivi +
b∑
i=1

βiui +
c∑
i=1

γiwi = 0.

Rewriting,
a∑
i=1

αivi +

b∑
i=1

βiui = −
c∑
i=1

γiwi, (†)

where the LHS is in U and the RHS is in W . This implies that
∑c

i=1 γiwi ∈ U ∩W,
and can be written as

∑c
i=1 γiwi =

∑a
i=1 µivi, for some µi, and then substituting

this back into (†),
a∑
i=1

(αi + µi)vi +
b∑
i=1

βiui = 0

which forces βi = 0. A similar argument also gives γi = 0, which then finally forces
αi = 0, since {v1, . . . , va} is a basis.

Proposition 1.21 (Dimension of the Quotient Space)

If V is a finite dimensional vector space over F and U ⊆ V , then U and V/U are
also finite dimensional, and dimV = dimU + dimV/U .

Proof. Let {u1, . . . , u`} be a basis of U , and extend it via Steinitz exchange lemma
to a basis {u1, . . . , u`, w`+1, . . . , wn} of V .

It’s easy to see that {w`+1 + U, . . . , wn + U} is a basis of V/U , as it clearly spans
and linear independence is inherited from it being a basis of V . The result then
follows.

§1.4 Direct Sums

Previously, we were able to look at the substructure of a vector space by looking at
subspaces. Given two subspaces, we were then able to construct their sum, which is the
set of all linear combinations of elements in each subspace.

When studying a vector space using its subspaces in this way (considering their sum), it
can be useful to impose an additional constraint about the way in which the subspaces
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interact. In particular, it can be useful to impose a uniqueness constraint on the linear
combinations that are created.

Definition 1.22 (Direct Sum)

Let V be a vector space over F, and let U,W ≤ V . We say that V is the direct
sum of U and W , written V = U ⊕W if and only if every element v ∈ V can be
decomposed as

v = u+ w

with u ∈ U and w ∈W , with this decomposition being unique.

Of course, we can generalize the notion of a direct sum naturally to the case of multiple
subspaces, in the way that you would expect.

Remark (Warning). We say that W is a direct complement of U in V . There is no
uniqueness of such a complement!

Lemma 1.23

Let V be a vector space and let U,W ≤ V . Then the following are equivalent.

(i) V = U ⊕W

(ii) V = U +W and U ∩W = {0}

(iii) For any basis B1 of U and B2 of W , the union B = B1 ∪B2 is a basis of V .

Proof. (ii) implies (i). Let V = U +W with U ∩W = {0}. Then for all v ∈ V , we
can write v = u + w with u ∈ U and w ∈ W . To see that this is unique, suppose
that

v = u+ w = u′ + w′.

Then (u− u′) = −(w−w′), and thus they are both in U ∩W , but the only element
of this is 0, and thus u = u′ and w = w′, giving us uniqueness.

(i) implies (iii). Let B1 be a basis of U and B2 be a basis of W . Then B = B1 ∪B2

clearly spans V , so we need to check that it’s linearly independent. Indeed, if∑
u∈B1

λuu+
∑
w∈B2

λww = 0,

then V = U ⊕ W implies that since this is the sum of an element of U and an
element of W , then each is zero, and linear independence follows from B1, B2 being
sets of linearly independent vectors.

(iii) implies (ii). Clearly we have V = U + W , so we just need to check that
U ∩W = {0}. Let v ∈ U ∩W . Then we can write

v =
∑
u∈B1

λuu =
∑
w∈B2

λww =⇒
∑
u∈B1

λuu−
∑
w∈B2

λwW = 0,

and since B1 ∪ B2 is a basis for V , we must have λu, λw = 0 for all u,w ∈ B1, B2,
implying that v = 0.

This result extends as you would expect for the case of direct products using multiple
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subspaces.

§2 Linear Maps

§2.1 Linear Maps and Isomorphisms

We are now going to turn our attention to linear maps, which are maps that preserve
the underlying structure of the vector space that they act on.

Definition 2.1 (Linear Map)

Let V,W are vector spaces over F. A map α : V → W is a linear map if for all
λ1, λ2 ∈ F and v1, v2 ∈ V we have

α(λ1v1 + λ2v2) = λ1α(v1) + λ2α(v2).

Example 2.2 (Examples of Linear Maps)

(i) Consider the vector space C[0, 1] of continuous functions f : [0, 1] → R, Then
for any fixed point x ∈ [0, 1], the map α : C[0, 1] → R with α(f) = f(x) is a
linear map.

(ii) The map R3 → R given by (a, b, c) 7→ 4a+ 2b+ c is a linear map.

(iii) The map α : Q[
√

2] → Q[
√

2] of ‘multiplying by
√

2’ is a linear map, with
a+ b

√
2 7→ 2b+ a

√
2.

It’s easy to see that the identity map is a linear map, and also that linearity is preserved
by composing linear maps.

One nice thing about linear maps is that they interact well with basis, because of lin-
earity. Indeed, specifying a linear map on the basis is sufficient to define that map on
all of a vector space.

Lemma 2.3 (Extension by Linearity)

Let V and W be vector spaces, and let B be a basis for V . Then if α0 : B → W is
any map, then there exists a unique linear map α : V → W extending α0, so that
for all v ∈ B we have α(v) = α0(v).

Proof. For v ∈ V , let v =
∑n

i=1 λivi. Then necessarily by linearity, we define

α(v) = α

(
n∑
i=1

λivi

)
=

n∑
i=1

λiα0(vi).

By construction this is a linear map and it extends α0.

As with many other areas of pure mathematics, we have a special case for the structure
preserving bijections on a given object.
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Definition 2.4 (Isomorphism)

If V and W are vector spaces over F, the linear map α : V →W is an isomorphism
if it also bijective. We say two vector spaces V and W are isomorphic, written
V ∼= W , if there is an isomorphism between them.

Remark. if α : V → W is an isomorphism, then the inverse map α−1 exists and
importantly it’s also linear.

Lemma 2.5 (Isomorphism is an Equivalence Relation)
∼= is an equivalence relation on the class of all vector spaces over F.

Proof. For reflexivity, we note that the identity map id : V → V is an isomorphism.
For symmetry, we note that if α : V → W is an isomorphism, then α−1 : W → V
is also an isomorphism. Lastly, we get transitivity because if α : U → V and
β : V →W are isomorphisms, then β ◦ α : U →W is also an isomorphism.

From one perspective, isomorphism allows us to know when two objects are really just
different representations of the same thing. With this in mind, the following result tells
us something interesting (yet unsurprising) about the nature of finite dimensional vector
spaces.

Theorem 2.6 (Isomorphism for Finite Dimensional Vector Spaces)

If V is an n dimensional vector space over F, then V ∼= Fn, the vector space

Fn =



x1
x2
...
xn

 | x1, . . . , xn ∈ F

 ,

where addition is component-wise.

Proof. Let B = {v1, . . . , vn} be a basis for V . Then we claim that the map α : V →
Fn defined by

v =

n∑
i=1

λivi 7−→

λ1...
λn


is an isomorphism. Indeed, it’s easy to see that we have linearity inherited from F,
and also the map is a bijection, so indeed we do have V ∼= Fn.

In particular, this result tells us that when we choose a basis for a finite dimensional
vector space V , it’s really the same as picking some isomorphism from V to Fn.

This theorem also directly implies (with isomorphism being an equivalence relation) a
criterion for two finite dimensional vector spaces to be isomorphic.

Theorem 2.7 (Isomorphism Criterion)

11
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Let V and W be finite dimensional vector spaces over F. Then they are isomorphic
if and only if they have the same dimension.

§2.2 Images and Kernels

Stepping back from isomorphisms, we need to define some frequently used concepts
relating to linear maps.

Definition 2.8

Let V,W be vector spaces over F , and let α : V → W be a linear map. We define
the kernel of α as

kerα = {v ∈ V | α(v) = 0},

and the image of α as

imgα = {w ∈W | w = α(v), v ∈ V }.

The structure of a linear map carries over to the image and the kernel, and naturally
implies that they are both subspaces of their parent vector spaces.

Lemma 2.9 (Image and Kernel are Subspaces)

Let α : V → W be a linear map. Then kerα and imgα are subspaces of V and W
respectively.

Proof Sketch. Check definitions.

You may recognize the definitions of the kernel and image from a course in group theory,
particularly in relation to the first isomorphism theorem5. Indeed, remembering that
vector spaces with vector addition are groups, with we can use the kernel and image of
a linear map to establish an isomorphism between vector spaces.

Theorem 2.10 (First Isomorphism Theorem For Vector Spaces)

Let V and W be F vector spaces, and let α : V → W be a linear map. Then
V/ kerα ∼= imgα.

Proof Sketch. Consider the isomorphism α : V/ kerα → imgα defined by α(v +
kerα) = α(v), and check definitions.

Now while the kernel and image being subspaces are rather straightforward, slightly more
interesting is the dimension of these subspaces. This is described by the rank-nullity
theorem.

Definition 2.11 (Rank and Nullity)

Let α be a linear map. Then the rank of α, r(α) = dim imgα, is the dimension of
the image. The nullity of α, n(α) = dim kerα, is the dimension of the Kernel.

5Recall that if G and H are groups, and φ : G→ H is a homomorphism, then G/ kerφ ∼= img φ.
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Theorem 2.12 (Rank-Nullity Theorem)

Let U and V be vector spaces such that U is finite dimensional. Let α : U → V be
a linear map. Then

dimU = r(α) + n(α).

Proof. We know that U/ kerα ∼= imgα. Thus dim(U/ kerα) = dim(imgα), that is
dimU − dim kerα = dim imgα, or dimU = r(α) + n(α).

This result has an important consequence which is incredibly useful for quickly checking
if a map is an isomorphism.

Lemma 2.13 (Characterisation of Isomorphism)

Let V and W be vector spaces over F with equal finite dimension. Then the following
are equivalent:

(i) α is injective,

(ii) α is surjective,

(iii) α is an isomorphism.

Proof Sketch. Follows directly from the rank-nullity theorem.

§2.3 Matrices

When dealing with vector spaces, it’s sometimes convenient to work with vector spaces
in the abstract, and other times it’s convenient to pick some nice basis which you can
easily work with. When dealing with linear maps α : V →W , it it can also be useful to
work with bases. The way we do this is by introducing matrices.

It’s important to say that matrices are not the essence of linear algebra, and in may cases
viewing the subject in this way will just give you the impression that linear algebra is
an opaque subject. Instead, you should think of matrices as a nice representations of
linear maps for which its easy to perform computations with. With that said, let’s talk
about linear maps.

In this section, we are going to discuss linear maps between two vector spaces V and W .

Definition 2.14 (Space of Linear Maps)

Let V and W be vector spaces over F. We define

L(v, w) = {α : V →W | α is a linear map}.

Proposition 2.15 (Space of Linear Maps is a Vector Space)

L(V,W ) is a vector space over F. Moreover, if V and W are finite dimensional, then

dimL(V,W ) = dimV · dimW.

13
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Proof Sketch. To see that L(V,W ) is a vector space, one just needs to check defini-
tions. We will leave the proof of the dimension until later.

Now, given some linear map α, let’s think about how we can represent this map with
respect to a basis. Suppose that we had a finite dimensional vector space V with basis
{v1, . . . , vm}, and a finite dimensional vector space W with basis {w1, . . . , wn}, and
suppose that we had some linear map α : V →W .

Given some v ∈ V , if we wanted to work out α(v), we can write express v in the basis
above, with

α(v) = α

(
m∑
i=1

λivi

)
=

m∑
i=1

λiα(vi).

So, to compute what α(v) is for any v ∈ V , it suffices to know what α(v1), . . . , α(vm) is.
To specify what say α(v1) is, we can use the above basis of W and write

α(v1) = a11w1 + a21w2 + · · ·+ an1wn,

for some coefficients ai1. Repeating this for v2, . . . , vn then totally specifies the linear
map α. These collection of coefficients can be put into a matrix, which will then be a
representation of α when coupled with the bases {vi} and {wi}.

Definition 2.16 (Matrix)

An n×m matrix over F is an array with n rows and m columns, with entries in F:

A =


a11 a12 · · · a1m
a21 a22 · · · a2m
...

...
. . .

...
an1 an2 · · · anm

 .

We denote the set of n×m matrices over F by Mn,m(F).

Proposition 2.17 (Vector Space of Matrices)

Mn,m(F) is an F-vector space.

Proof Sketch. Taking addition entry-wise we can just check definitions.

Proposition 2.18 (Dimension of Mn,m(F))

dimMm,n(F) = m× n.

Proof. We define the elementary matrix Ei,j such that every entry is 0 except for
the i, jth entry, which is 1. Then the set {Ei,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n} is clearly a
basis, and has n×m elements.

Following on from the discussion above, we can now write down how linear maps can be
represented using matrices.

14
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Definition 2.19 (Matrix of α in the B,C Basis)

Let α : V → W be a linear map, and let B = {v1, . . . , vm} be a basis of V and
C = {w1, . . . , wn} be a basis of W . Then we define the matrix of α to be

[α]B,C =

 | | |
[α(v1)]C [α(v2)]C · · · [α(vm)]C
| | |

 =


a11 a12 · · · a1m
a21 a22 · · · a2m
...

...
. . .

...
an1 an2 · · · anm

 ,

where aij is the coefficient of wi in α(vj).

Remark (Notation). We use [v]C to denote the column vector representing the vector
v in the basis C.

Proposition 2.20 (Matrix Representation of Linear Maps)

If V and W are vector spaces over F such that dimV = n and dimW = m, then
L(V,W ) ∼=Mm,n(F).

Proof. Fix a basis B,C of V and W respectively. Then consider the linear map
θ : L(V,W )→Mm,n(F) given by α 7→ [α]B,C .

This map is clearly linear, and it’s also clearly a bijection thus it’s an isomorphism
and our result follows.

Remark. This implies that dimL(L,W ) = m× n.

What’s nice about matrices is that they make working with linear maps easy. It’s
generally much easier to manipulate arbitrary matrices than it is to arbitrary linear
maps (of course, this varies from case to case), and we will see this in the following set
of computational results.

You should be familiar from previous courses with the notion of matrix multiplication.

Definition 2.21 (Matrix Multiplication)

Let A = (aij) be an n × p matrix, and B = (bij) be an p ×m matrix. Then their
product C = A ·B is an n×m matrix C = (cij), with

cij =

p∑
k=1

aikbkj .

We can use matrix multiplication in lots of nice ways.

Lemma 2.22 (Evaluating Linear Maps)

Let α : V → W be a linear map, and let B,C be bases for V and W respectively.
Then if v ∈ V , we have

[α(v)]C = [αB,C ] · [v]B.

15
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Proof. Let v ∈ V , and let v =
∑n

j=1 λjvj . Then

α(v) =
n∑
j=1

λjα(vj) =
n∑
j=1

λj

m∑
i=1

aijwi =
m∑
i=1

 n∑
j=1

aijλj

wi,

as required.

Lemma 2.23 (Composing Linear Maps)

Let α : V → W and β : U → V be linear maps. Then if A,B,C are bases of U, V
and W respectively, we have

[α ◦ β]A,C = [α]B,C · [β]A,B.

Proof Sketch. Use the definition of matrix multiplication to check that this map
corresponds to the correct thing.

§2.4 Change of Basis and Equivalent Matrices

Matrices represent a linear map with respect to a given basis, so a natural question is
how do we rewrite a matrix in a different basis? That is, given two vector spaces V,W
and a linear map α : V → W , we want to take the matrix [α]B,C and express it with
respect to the basis B′, C ′.

The way we do this is by introducing a change of basis matrix.

Definition 2.24 (Change of Basis Matrix)

The change of basis matrix from B′ to B is the matrix P = [I]B′,B, where I is the
identity map.

Remark. P is an invertible square matrix, and P−1 is the change of basis matrix from
B to B′.

Given a vector represented in a basis B, the change of basis matrix allows that vector
to be expressed in a different basis B′.

Lemma 2.25 (Change of Basis for a Vector)

Let B and B′ be bases for a vector space V , and let v ∈ V . Then if P is the change
of basis matrix from B′ to B we have

[v]B = P [v]B′ .

Proof. We know that P = [I]B′,B, and so [I(v)]B = [I]B′,B[v]′B = P [v]B′ .

Using this idea of change of basis matrices, we can express the matrix of a linear map
with respect to another basis.
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Proposition 2.26 (Change of Basis Formula)

Let A = [α]B,C and A′ = [α]B′,C′ , and let P be the change of basis from B′ to B
and Q be the change of basis matrix from C ′ to C. Then

A′ = Q−1AP.

Proof Sketch. Check definitions.

§2.5 Equivalent Matrices

A natural notion of equivalence comes from saying two matrices are equivalent if there
is some choice of basis for which they represent the same linear map. Using the change
of basis formula, we can pin down this notion exactly.

Definition 2.27 (Equivalent Matrices)

We say that two matrices A,A′ ∈ Mm,n(F) are equivalent if A′ = Q−1AP for
some invertible matrices Q ∈Mm,m(F) and P ∈Mn,n.

It’s easy to check that this definition gives us an equivalence relation, and indeed it turns
out that the equivalence classes of matrices are remarkably straightforward.

Proposition 2.28 (Natural Basis for Matrices)

Let V,W be vector spaces over F, with dimV = n and dimW = m. Let α : V →W
be a linear map, Then there exists a basis B of V and a basis C of W such that

[α]B,C =

(
Ir 0

0 0

)
,

where r = r(α) and Ir is the r × r identity matrix.

Proof. We first choose a basis {vr+1, . . . , vn} of kerα, and extend it to a basis
B = {v1, . . . , vn} of V . We will first show that {α(v1), . . . , α(vr)} is a basis of
imgα.

To see that it’s spanning, given v ∈ V we can write α(v) = α (
∑n

i=1 λivi) =∑n
i=1 λiα(vi) =

∑r
i=1 λiα(vi), since α(vi) = 0 for i > r.

To see that we have linear independence, suppose that
∑r

i=1 λiα(vi) = 0. Then
we have α (

∑r
i=1 λivi) = 0 implying that

∑r
i=1 λivi ∈ kerα, and since the kernel

is spanned by {vr+1, . . . , vn} and {v1, . . . , vn} is a basis, we must have λi = 0, as
required.

We can now extend this basis to a basis C = {α(v1), . . . , α(vr), wr+1, . . . , wm} of
W . Then we can express α as a matrix in the basis B and C as

[α]B,C =

 | | | |
[α(v1)]C · · · [α(vr)]C [α(vr+1)]C · · · [α(vn)]C
| | | |


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=

 | | | |
[α(v1)]C · · · [α(vr)]C [0]C · · · [0]C
| | | |

 ,

and it can easily be seen that this matrix is of the form desired.

This result gives us a clear criterion for the equivalence of matrices, and also gives us
a lovely result which is useful for choosing a basis which works nicely with the matrix
representation of a linear map.

Corollary 2.29 (Matrix Equivalence Criterion)

Two m× n matrices are equivalent if the linear maps they represent have the same
rank.

The equivalence criterion above is great, but doesn’t give us a very easy way to see what
the rank of the underlying linear map is, without doing a large amount of work. What
we really want is a way to get this rank directly from the matrix. We can do this by
considering the column and row rank of a matrix (which as we will see are really the
same notion).

Definition 2.30 (Column and Row Rank)

Let A ∈Mm,n(F). The column rank of A, r(A), is the dimension of the subspace
of Fm spanned by the column vectors of A.

Similarity, the row rank is the dimension of the subspace spanned by the row
vectors of A (that is, it’s the column rank of AT ).

Remark. If α is a linear map, represented by a matrix A with respect to some basis,
then r(A) = r(α), so column rank is the same as the rank.

Proposition 2.31 (Equivalence from Row Rank)

Two matrices A,A′ are equivalent if and only if r(A) = r(A′).

Proof. If they are equivalent, then they correspond to the same linear map α, ex-
pressed in two different bases. So the column rank is r(A) = r(A′) = r(α), and we
are done.

If r(A) = r(A′) = r, then A and A′ are both equivalent to(
Ir 0

0 0

)
,

and by transitivity of equivalent, we have A and A′ equivalent.

The distinction between column rank and row rank is really non-existent, as the following
result shows. This also means that we can refer to the column and row rank as just the
‘rank’ of the matrix.

Theorem 2.32 (Column Rank Equals Row Rank)
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r(A) = r(AT )

Proof. Let r = r(A). Then we know that we can write

Q−1AP =

(
Ir 0

0 0

)
,

then taking the transpose, we have (Q−1AP )T = P TAT (Q−1)T = P TAT (QT )−1 so
P TAT (QT )−1 is (

Ir 0

0 0

)T
,

which is an n×m matrix. But then r = r(A) = r(AT ).

Let’s now consider the special case of endomorhisms, that is, linear maps α : V → V .

If B and B′ are a basis for V , and P is the change of basis matrix from B′ to B, then
given α we have [α]B′,B′ = P−1[α]B,BP , which is a special case of the change of basis
formula. This idea of writing a matrix using the same basis for the domain and range
gives us similarity, another notion of matrices being the same.

Definition 2.33 (Similar Matrices)

Let A,A′ be two n × n square matrices. We say that A and A′ are similar or
conjugate if and only if A′ = P−1AP for some invertible n× n matrix P .

This idea of similarity will be a central concept when we deal with the diagonalization
of such matrices later on.

§3 Dual Space

§3.1 Defining the Dual Space

We are now going to turn our attention to an interesting set of linear maps on a vector
space.

Definition 3.1 (Dual Space)

Let V be a vector space over a field F. The dual space V ∗ is the set of linear maps
from V to F,

V ∗ = L(V,F).

So how should we understand this space? As usual, things are easier for finite dimensional
vector spaces, so we are going to start there. We know from the previous section that
any linear map is determined by its action on basis vectors. So if we have some finite
dimensional vector space V with basis {v1, . . . , vn} and a linear map α : V → F, we just
need to know α(v1), . . . , α(vn) ∈ F.

This tells us exactly what the nice way to think about the dual space is – through a
basis that just picks out basis vectors so that we can deal with them individually. We
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call this the dual basis.6

Definition 3.2 (Dual Basis)

Let V be a finite dimensional vector space over F with a basis B = {v1, . . . , vn}.
Then we define the dual basis for V ∗ to be B∗ = {ε1, . . . , εn} where εj(vi) = δij .

In particular, if v ∈ V can be written as v =
∑n

i=1 λivi, then εj(v) = λj .

Since this is a basis of V ∗, we can immediately see that dimV ∗ = dimV . Sometimes it’s
also convenient to think of V ∗ as the space of row vectors of length m over F7

§3.2 The Annihilator

When we have some subset U of a vector space V , we frequently care about the set
of linear maps that are zero on everything in U . This construction ends up gives us a
subspace of the dual space V ∗.

Definition 3.3 (Annihilator)

If V is a vector space over F, and U ⊆ V , then the annihilator of U is the set U0

of linear maps V → F that are zero on U ,

U0 = {α ∈ V ∗ | α(u) = 0 for all u ∈ U}.

Lemma 3.4 (Annihilator is a Subspace)

The annihilator is always a subspace of the dual, that is, U0 ≤ V ∗.

Proof Sketch. Check definitions.

By thinking about the annihilator, we also get a result that looks a little like rank-nullity.

Lemma 3.5 (Rank-Nullity for the Annihilator)

If V is a finite dimensional vector space and U ≤ V , then dimV = dimU + dimU0.

Proof Sketch. Let {v1, . . . , vk} be a basis of U , and extend it to a basis B =
{v1, . . . , vn} of V . Then the dual basis is B′ = {ε1, . . . , εn}. We then just need
to check that {εk+1, . . . , εn} is a basis of U0.

§3.3 The Dual Map

We will now see that thinking about the dual will give us a basis-free interpretation of
what corresponds with the transpose of a matrix.

6We just write it as a definition here, but we should really check that it is indeed a basis of the dual,
but I think it’s relatively clear so this is left to the reader.

7There’s also a hidden inner product structure here, but we won’t dwell on that.
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Definition 3.6 (Dual Map)

Let V and W be vector spaces, and suppose that α : V →W is a linear map. Then
we define the dual map of α to be linear map α∗ : W ∗ → V ∗ given by ε 7→ ε ◦ α.

To see what this is all about, consider the following example.

Example 3.7 (Using the Dual Map)

Let V and W be R vector spaces, and let B = {v1, v2, v3} be a basis for V and
C = {w1, w2} be a basis for W .

We define the linear map α : V →W by

α(v1) = w1 + w2

α(v2) = 2w1 − w2

α(v3) = 6w1 + 3w2.

Now we can see what the dual map α∗ : W ∗ → V ∗ looks like. Let B∗ = {v∗1, v∗2, v∗3}
be the corresponding dual basis of V , and let C∗ = {w∗1, w∗2} be the corresponding
dual basis of W . Then for any v = av1 + bv2 + cv3 we have

[α∗(w∗1)](v) = w∗1(α(av1 + bv2 + cv3))

= w∗1((a+ 2b+ 6c)w1 + (a− b+ 3c)w2)

= a+ 2b+ 6c,

and in this way, we can really write

α∗(w∗1) = v∗1 + 2v∗2 + 6v∗3, and α∗(w∗2) = v∗1 − v∗2 + 3v∗3,

which totally specifies α∗.

A slightly more interesting way of viewing this example is through the lense of matrices.

Example 3.8 (Above with Matrices)

Continuing on from the example above, we can see that in the B,C basis we have

[α]B,C =

(
1 2 6
1 −1 3

)
.

Then α∗ in the C∗, B∗ basis is given by

[α∗]C∗,B∗ =

1 1
2 −1
6 3

 .

Of course, in finite dimensions this works in the general case.

Theorem 3.9 (Transpose Interpretation of the Dual Map)

Let V and W be finite dimensional vector spaces over F. Let B be a basis for V
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and C be a basis for W , and let B∗, C∗ be the corresponding dual spaces. Then if
α : V →W is a linear map, we have

[α∗]C∗,B∗ = [α]TB,C .

Proof. Let B = {v1, . . . , vn} be a basis for V and C = {w1, . . . , wm} be a basis for
W , and let B∗, C∗ be the corresponding dual spaces. Then

([α]B,C)i,j = ([α(vi)]C)j = ([w∗j ◦ α]B∗)i = ([α∗]C∗,B∗)j,i,

as required.

This result about viewing the matrix of α∗ in terms of the matrix of α hints at a more
general perspective where it can be easier to understand one of α and it’s dual α∗ than
the other, and indeed many properties of α∗ can be derived from α.

For example, the result below is immensely important8 and is an example of the ‘duality
approach’.

Proposition 3.10 (Properties of the Dual Map)

Let V and W be vector spaces over F, and let α : V →W be a linear map. Then

(i) kerα∗ = (imgα)0, so α∗ is injective if and only if α is surjective.

(ii) imgα∗ ≤ (kerα)0, with equality if V and W are finite dimensional (in this
case, α∗ is surjective if and only if α is injective).

Proof. (i) Let ε ∈ W ∗. Then ε ∈ kerα∗ if and only if α∗(ε) = 0, that is, if
ε(α(v)) = 0 for all v ∈ V . But this occurs if and only if ε ∈ (imgα)0.

(ii) We will first show that imgα∗ ≤ (kerα)0. Indeed, let ε ∈ imgα∗. Then
ε = α∗(φ) for some φ ∈W ∗. But then for all u ∈ kerα we have ε(u) = (α∗(φ))(u) =
φ(α(u)) = 0. So then ε ∈ (kerα)0, and thus imgα∗ ≤ (kerα)0 as required.

In finite dimensions, we can compute the dimensions of the two spaces. We have

dim imgα∗ = r(α∗) = r([α∗]C∗,B∗) = r([α]TB,C) = r(α).

So dim imgα∗ = r(α), and by rank-nullity, this is dimV −dim kerα = dim (kerα)0.
So imgα∗ ≤ (kerα)0 and also dim imgα∗ = dim(kerα)0, giving us equality.

§3.4 Double Dual

In general, there is no obvious relation between V and V ∗, in that all of the relations
we discussed in the previous section rely on choosing a basis – and choosing bases is an
inherently arbitrary process. However, there is a canonical (that is, basis free) relation
between V and (V ∗)∗.

Definition 3.11 (Double Dual)

8But we won’t see in this course why that is.
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Let V be a vector space over F, and V ∗ = L(V,F) be the dual of V . Then we define
the double dual or bidual of V to be

V ∗∗ = L(V ∗,F) = (V ∗)∗.

Indeed, there is a canonical embedding from V to V ∗∗, and there are non-trivial exam-
ples9 of infinite dimensional spaces where V ∼= V ∗∗.

V

V ∗∗

i

injective
i(V )

This canonical embedding is described by ‘evaluating at v’.

Theorem 3.12 (Canonical Embedding of V into V ∗∗)

There is a natural injective linear map from V to V ∗∗, called the evaluation map.

Proof. Let V be an F vector space, and let v ∈ V . We define the evaluation at v
map

v̂ : V ∗ → F by v̂(ε) = ε(v).

Then v̂(ε1 + λε2) = (ε1 + λε2)(v) = ε1(v) + λε2(v), so v̂ ∈ V ∗∗.

The proof that this is injective is intentionally omitted.

Theorem 3.13 (Canonical Embedding in Finite Dimensions)

If V is finite dimensional, then the evaluation map is an isomorphism.

Proof. We know that for v ∈ V we have the evaluation map v̂ ∈ V ∗∗. It’s easy to see
that the map v 7→ v̂ is linear in v, so it is left to check that this map is a bijection.

Let e ∈ V \0. We can extend {e} to a basis B = {e, e2, . . . , en} of V . Let B∗ be the
dual basis of V . Then

ê(e∗) = e∗(e) = 1,

and in particular, ê 6= 0, so the kernel of the map v 7→ v̂ contains only 0, and thus
it is injectivea.

To see that this map is an isomorphism, we just need to compute dimensions. We
know that dimV = dimV ∗ = dim(V ∗)∗ = dimV ∗∗, and this along with injectivity
implies that the map v 7→ v̂ is an isomorphism.

aThis step of the proof has an analogue in infinite dimensions for a certain kind of vector space

9Such as LP (Rd) = {f : Rd → R |
∫
Rd |f(x)|p dx <∞}.
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(Banach space), but requires the use of non-trivial results (the Hahn-Banach theorem).

This canonical embedding allows us to ‘identify’ V and V ∗∗, which in turn can be used
to prove various facts about say the annihilator.

Lemma 3.14 (Double Annihilator)

Let V be a finite dimensional vector space over F, and U ≤ V . Then Û = U00, so
after identification of V and V ∗∗, we have U = U00.

Proof. Let us first show that U ≤ U00. Indeed, let u ∈ U . Then for all ε ∈ U0,
ε(u) = 0. But then ε(u) = û(ε) = 0, so û ∈ U00, and Û ≤ U00.

We can then compute dimensions, and dimU00 = dimV − dimU0 = dimU , and
since v 7→ v̂ is an isomorphism, dim Û = dimU . Thus dim Û = dimU = dimU00,
and Û = U00.

Remark. With the identification of V ∗∗ and V , for T ≤ V ∗ we can define T 0 = {v ∈
V | α(v) = 0, ∀α ∈ T}.

These results give us some unsurprising properties which are useful for doing computa-
tions.

Lemma 3.15 (Sums and Intersections of Annihilators)

Let V be a finite dimensional vector space over F, and let U1, U2 ≤ V . Then

(i) (U1 + U2)
0 = U0

1 ∩ U0
2 ;

(ii) (U1 ∩ U2) = U0
1 + U0

2 .

Proof. (i) Let θ ∈ V ∗, then θ ∈ (U1 + U2)
0 if and only if θ(u1 + u2) = 0 for all

u1 ∈ U1 and u2 ∈ U2. By linearity this is exactly when θ(u) = 0 for u ∈ U1 ∪ U2,
which occurs if and only if θ ∈ U0

1 ∩ U0
2 .

(ii) Take the annihilator of the result in (i), and use the fact that U00 = U .

§4 Bilinear Forms

§4.1 Introducing Bilinear Forms

In the previous section we considered linear maps from a vector space to the scalar field
that vector space is over. In this section we will look at a related but interesting set of
maps which have two arguments and are linear in both. Such maps are bilinear forms.

Definition 4.1 (Bilinear Form)

Let U and V be vector spaces over F. Then φ : U × V → F is a bilinear form if it
is linear in both components.

Example 4.2 (Examples of Bilinear Forms)

24



Adam Kelly (November 8, 2021) Linear Algebra

The following are all bilinear forms.

(i) A canonical example – the scalar product on U = V = Rn.

(ii) The map V × V ∗ → F given by (v, α) 7→ α(v).

(iii) For U = V = C([0, 1],R) the map φ(f, g) =
∫ 1
0 f(t)g(t) dt.

There is a standard representation of bilinear forms using matrices.

Definition 4.3 (Matrix of a Bilinear Form)

Let B = {u1, . . . , un} be a basis of U and C = {v1, . . . , vm} be a basis of V , and let
φ : U × V → F be a bilinear form.

We define the matrix of φ with respect to B and C by

([φ]B,C)i,j = φ(ui, vj).

Lemma 4.4 (Evaluating a Bilinear Form)

Let φ : U × V → F be a bilinear form, and let u ∈ U and v ∈ V . Then if B is a
basis of U and C is a basis of V , we have

φ(u, v) = [u]TB[φ]B,C [v]C .

Proof Sketch. Check definitions.

Remark. [φ]B,C is the unique matrix such that this equation holds.

It’s sometimes useful to study a bilinear form in just one of its arguments. This can be
done by considering the induced maps.

Definition 4.5 (Induced Map of a Bilinear Form)

Let φ : U ×V → F be a bilinear form. Then φ determines two linear maps φL : U →
V ∗ and φR : V → U∗, with

(φL(u))(v) = φ(u, v) and (φR(v))(u) = φ(u, v).

These induced maps area easily obtained from the matrix of the bilinear form.

Lemma 4.6 (Matrices of the Induced Maps)

Let φ : U × V → F be a bilinear map. Then if B = {u1, . . . , un} is a basis of U and
C = {v1, . . . , vm} is a basis of U , then if A = [φ]B,C we have

[φR]C,B∗ = A and [φL]B,C∗ = AT .

Proof Sketch. Check definitions.

Just as with the linear maps that we studied previously, it’s possible look at the kernel
of a bilinear map by considering the left and right component.

25



Adam Kelly (November 8, 2021) Linear Algebra

Definition 4.7 (Left/Right Kernel)

Let φ : U × V → F be a bilinear form. Then the left kernel of φ is kerφL, and the
right kernel of φ is kerφR.

Definition 4.8 (Degeneracy)

We say that a bilinear form φ is non-degenerate if kerφL = {0} and kerφR = {0}.
Otherwise, we say that φ is degenerate.

Lemma 4.9 (Matrix Degeneracy Criterion)

Let U and V be finite dimensional vector spaces, and let B be a basis of U and C
be a basis of V . Suppose φ : U ×V → F is a bilinear form with matrix [φ]B,C . Then
φ is non-degenerate if and only if A is invertible.

Proof. We know that φ is non-degenerate if and only if kerφL = {0} and kerφR =
{0}, that is, if and only if n(AT ) = 0 and n(A) = 0. But then by rank-nullity, we
have this if and only if r(AT ) = dimU and r(A) = dimV , that is, if and only if A
is invertible.

Corollary 4.10

If φ : U × V → F is a non-degenerate bilinear form, then dimU = dimV .

Corollary 4.11 (Chooing a Bilinear Form)

When U and V are finite dimensional vector spaces over F, then choing a non-
degenerate bilinear form φ : U × V → F is equivalent to choosing an isomorphism
φL : U → V ∗.

As with matrices for normal linear maps α : V → W , we can change the basis that the
matrix of a bilinear form is represented with.

Proposition 4.12 (Change of Basis for Bilinear Forms)

Let U and V be vector spaces over F and let B,B′ be bases for U and C,C ′ be bases
for V . Suppose that P is the change of basis matrix from B′ to B and Q is the
change of basis matrix from C ′ to C. Then if φ : U ×V → F is a bilinear form, then

[φ]B′,C′ = P T [φ]B,CQ.

Proof. We have

φ(u, v) = [u]TB[φ]B,C [v]C = (P [u]B′)
T [φ]B,C(Q[v]C′) = [u]TB′(P

T [φ]B,CQ)[v]C′ ,

and thus [φ]B′,C′ = P T [φ]B,CQ.

This change of basis formula also allows us to define the rank of a bilinear map and have
that definition be well defined.
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Definition 4.13 (Rank of a Bilinear Map)

The rank of a bilinear map φ, r(φ), is the rank of any matrix representation of φ.

To see that this is well defined, note that r(P TAQ) = r(A) for any invertible P,Q.

§4.2 Determinant and Trace

We will now look at the determinant and trace, two quantities you may be familiar with
from the study of matrices. In this section, we will consider how these can be interpreted
in a basis-free way.

Definition 4.14 (Trace)

Let A ∈Mn,n(F) be a square matrix. We define the trace of A by

trA =
n∑
i=1

Aii.

In particular, we have

tr

a11 · · · a1n
...

. . .
...

an1 · · · ann

 = a11 + · · ·+ ann.

Remark. The trace is a linear form Mn,n(F)→ F given by A 7→ trA.

Lemma 4.15 (Trace of order)

§5 Lecture 14

§5.1 Cramer’s Rule

We have an algorithm for computing the unique solution to Ax = b without computing
A−1.

Proposition 5.1 (Cramer’s Rule)

Let A ∈Mn,n(F) be an invertible matrix, and let b ∈ Fn. Then the unique solution
to Ax = b is given by

xi =
1

detA
det(Aîb),

where Aîb is teh matrix obtained by replacing the ith column of A by b.

Proof. Since A is invertible, there exists a unique x ∈ Fn with Ax = b. Then
computing we have

det(Aîb) = det(A(1), . . . , A(i−1), b, A(i+1), A(n))
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= det(A(1), . . . , A(i−1), Ax,A(i+1), A(n))

= det(A(1), . . . , A(i−1),

n∑
j=1

xjA
(j), A(i+1), A(n))

= xi det(A(1), . . . , A(i−1), A(i), A(i+1), A(n))

= xi detA.

§6 Diagonalization, Eigenvectors and Eigenvalues

§6.1 Antidiagonal Matrices

We are now going to take the first steps towards the diagonalisation of endomorphisms.
Given a finite dimensional vector space V over F and some endomorphism α : V → V ,
we are going to be guided by the following general problem:

Can we find a basis B of V such that in this basis [α]B,B has a ‘nice’ form?

With this in mind, we will first care about when this ‘nice’ form is a diagonal matrix, or
more generally a triangular matrix.

Definition 6.1 (Diagonalizable)

Let V be a vector space and let α : V → V be a linear map. We say that α is
diagonalizable if there is a basis B of V such that

[α]B,B =

λ1 · · · 0
...

. . .
...

0 · · · λn


where λi ∈ F.

Definition 6.2 (Triangulable)

Let V be a vector space and let α : V → V be a linear map. We say that α is
triangulable if there is a basis B of V such that

[α]B,B =

λ1 · · · ∗
...

. . .
...

0 · · · λn


where λi ∈ F.

We will see that when thinking about such matrices, we will frequently turn to the
concept of eigenvectors and eigenvalues.

Definition 6.3 (Eigenvectors and Eigenvalues)

If V is a vector space over F and α : V → V is a linear map, we say that λ ∈ F is a
eigenvalue if there exists some v ∈ V \{0} such that α(v) = λv. We say that v is a
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corresponding eigenvector.

Definition 6.4 (Eigenspace)

If λ is an eigenvalue of a linear map α : V → V , we define the corresponding
eigenspace to be the subspace Vλ = {v ∈ V | α(v) = λv}.

When computing eigenvalues we frequently employ the following lemma.

Lemma 6.5 (Computing Eigenvalues)

Let V be a vector space over F, and let α : V → V be a linear map. Then λ ∈ F is
an eigenvalue if and only if det(α− λ id) = 0.

Proof. There exists v ∈ V \{0} with α(v) = λv if and only if ker(α − λ id) 6= {0}.
This occurs if and only if α− λ id is not injective, and since α is an endomorphism,
this occurs if and only if α− λ id is not invertible, that is, if det(α− λ id) = 0.

Applying this lemma gives us a polynomial in λ which one must find the roots of to
obtain the eigenvalues of the linear map. We call this polynomial the characteristic
polynomial.

Definition 6.6 (Characteristic Polynomial)

Let α : V → V be an endomorphism. Then the characteristic polynomiala of α
is χα(λ) = det(α− λ id).

aIt should be checked that this definition is basis free, but this is straightforward.

The heart of the matter is the following criterion of triangulability.

Theorem 6.7 (Triangulability Criterion)

Let V be a vector space over F. A linear map α : V → V is triangulable if and only
if

χα(t) = c

n∏
i=1

(t− λi),

for some c, λi ∈ F.

Proof. Suppose α was triangulable. Then for some basis B of V we have

[α]B,B =

λ1 · · · ∗
...

. . .
...

0 · · · λn

 ,

and so

χα(t) = det

λ1 − t · · · ∗
...

. . .
...

0 · · · λn − t

 =

n∏
i=1

(λi − 1).
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Now suppose that this criterion holds. We will prove by induction on n = dimV
that it implies triangulability. For n = 1, we are immediately done, so suppose that
n > 1. Then let λ be a root of χα(t) (which exists by assumption). Then λ is an
eigenvalue of α. Let U = Vλ be the corresponding eigenspace, and let {v1, . . . , vk}
be a basis of U . We can complete this to a basis B = {v1, . . . , vn} of V . So then

[α]B,B =

(
λI ∗
0 C

)
.

Now α induces an endomorphism α : V/U → V/U , and C is the matirx of α with
respect to the basis {vk+1 + U, . . . , vn + U}, and by assumption we know we can
write this in triangular form by choosing a basis {v′k+1, . . . , v

′
n}, and taking the basis

B′ = {v1, . . . , vk, v′k+1, . . . , v
′
n} gives us [α]B′ in triangular form.

Remark. By the fundamental theorem of algebra, if F = C, then every matrix is
triangulable.
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