Markov Chains

Adam Kelly (ak2316@cam.ac.uk)

November 22, 2021

Abstract

A stochastic process is said to have the 'Markov property' if, conditional on its present value, the future is independent of the past. This is a restrictive assumption, but we do end up with a useful model with a rich mathematical theory, which we shall study in this course.

This article constitutes my notes for the 'Markov Chains' course, held in Michaelmas 2021 at Cambridge. These notes are not a transcription of the lectures, and differ significantly in quite a few areas. Still, all lectured material should be covered.

Contents

1 The Markov Property 1
1.1 What is a Markov Chain? 1
1.2 Simple Markov Property 3
1.3 Transition Probabilities 3
2 Class Structure 7
2.1 Communicating Classes 7
3 Hitting Times, Stopping Times and Absorption Probabilities 8
3.1 Hitting Times 8
3.2 Stopping Times and the Strong Markov Property 12
3.3 Recurrence and Transience 13
3.4 Recurrence an Transience for Random Walks in \mathbb{Z}^{n} 15

§1 The Markov Property

§1.1 What is a Markov Chain?

Let S be a countable set (the set of possible 'states'), and let X_{n} be a sequence of random variables taking values in S.

Definition 1.1 (Markov Chain)

The sequence of random variables X_{n} is a Markov chain if it satisfies the Markov property

$$
\mathbb{P}\left(X_{n+1}=x_{n+1} \mid X_{n}=x_{n}, \ldots, X_{0}=x_{0}\right)=\mathbb{P}\left(X_{n+1}=x_{n+1} \mid X_{n}=x_{n}\right) .
$$

The Markov chain is said to be homogeneous if for all $i, j \in S$ the conditional probability $\mathbb{P}\left(X_{n+1}=j \mid X_{n}=i\right)$ is independent of n.

In this course we are only going to study homogeneous Markov chains.
Markov chains are often best described by diagrams ${ }^{1}$ which show the probability of moving from one state to another. For example, the Markov chain in the diagram below has three states which we label $\{1,2,3\}$, and the probability of moving from state 1 to state 2 is $1 / 2$, and the probability of moving from state 2 to state 3 is $1 / 3$, and so on.

In general, to calculate the probabilities associated with a Markov chain, we need to know two quantities.

- The initial distribution. We first need to know about the starting state of a Markov chain. This is described by the initial distribution $\lambda=\left(\lambda_{i} \mid i \in S\right)$, where $\lambda_{i}=$ $\mathbb{P}\left(X_{0}=i\right)$.
- The transition probabilities. We also need to know the probability of moving from a state $i \in S$ to a state $j \in S$. This is typically given by a transition matrix $P=\left(P_{i, j} \mid i, j \in S\right)$ with $p_{i, j}=\mathbb{P}\left(X_{1}=j \mid X_{0}=i\right)$.
These quantities are of course subject to some constraints, in that we require $\sum_{i \in S} \lambda_{i}=1$ and the transition matrix P must be stochastic, in that $\sum_{j \in S} P_{i, j}=1$ for all $i \in S$.
If a Markov chain X_{n} has initial distribution λ and transition matrix P, we say that it is $\operatorname{Markov}(\lambda, P)$.

Once we have these quantities, we can begin to actually establish various properties about the Markov chain, for example the probability that it goes through a given sequence of states.

Theorem 1.2 (Probability of a Sequence of States)
The sequence of random variables X_{n} is $\operatorname{Markov}(\lambda, P)$ if and only if

$$
\mathbb{P}\left(X_{0}=i_{0}, X_{1}=i_{1}, \ldots, X_{n}=i_{n}\right)=\lambda_{i_{0}} P_{i_{0}, i_{1}} \cdots P_{i_{n-1}, i_{n}},
$$

for all $n \geq 0$ and $i_{0}, \ldots, i_{n} \in S$.
Proof. Let A_{k} denote the event $\left\{X_{k}=i_{k}\right\}$. First suppose that X_{n} is $\operatorname{Markov}(\lambda, P)$. We prove the result holds by induction. For $n=0$ this is true by definition. Then

[^0]if it holds up to n, we have
\[

$$
\begin{aligned}
\mathbb{P}\left(A_{0} \cap \cdots \cap A_{n}\right) & =\mathbb{P}\left(A_{0} \cap \cdots \cap A_{n-1}\right) \mathbb{P}\left(A_{n} \mid A_{0} \cap \cdots \cap A_{n-1}\right) \\
& =\mathbb{P}\left(A_{0} \cap \cdots \cap A_{n-1}\right) \mathbb{P}\left(A_{n} \mid A_{n-1}\right) \\
& =\left(\lambda_{i_{0}} P_{i_{0}, i_{1}} \cdots P_{i_{n-2}, i_{n-1}}\right) P_{i_{n-1}, i_{n}},
\end{aligned}
$$
\]

which completes our induction.
Conversely, suppose that the result holds. Then with $n=0$ we get that the initial distribution of X_{n} is λ. Then

$$
\mathbb{P}\left(A_{n+1} \mid A_{0} \cap \cdots \cap A_{n}\right)=\frac{\mathbb{P}\left(A_{0} \cap \cdots \cap A_{n+1}\right)}{\mathbb{P}\left(A_{0} \cap \cdots \cap A_{n}\right)}=P_{i_{n}, i_{n+1}} .
$$

Since this does not depend on $i_{0}, \ldots, i_{n-1}, X_{n}$ is a homogeneous Markov chain with transition matrix P, as required.

§1.2 Simple Markov Property

An important aspect of Markov chains is that they are memoryless, in the future is independent of the past, conditional on the present. This is encapsulated in the simple Markov property.

Theorem 1.3 (Simple Markov Property)
Let X_{n} be a Markov chain. Then conditional on $X_{m}=i$, the sequence of random variables $\left(X_{m+n}\right)_{n \geq 0}$ is ${ }^{a} \operatorname{Markov}\left(\delta_{i}, P\right)$, and is independent of X_{0}, \ldots, X_{m-1}.
${ }^{a}$ Here $\delta_{i j}$ is 1 if $i=j$ and 0 otherwise.

Proof. Given any event H determined by X_{0}, \ldots, X_{m-1}, we want to show that for an event $F=\left\{X_{m}=i_{m}, \ldots X_{m+n}=i_{m+n}\right\}$ we have

$$
\mathbb{P}\left(H \cap F \mid X_{m}=i\right)=\delta_{i i_{m}} P_{i_{m}, i_{m+1}} \cdots P_{i_{m+n-1}, i_{m+n}} \mathbb{P}\left(H \mid X_{m}=i\right) .
$$

Indeed, considering the case of $H=\left\{X_{0}=i_{0}, \ldots, X_{m}=i_{m}\right\}$ we have

$$
\begin{aligned}
\mathbb{P}\left(H \cap F \mid X_{m}=i\right) & =\frac{\lambda_{i_{0}} P_{i_{0}, i_{1}} \cdots P_{i_{m-1}, i} P_{i, i_{m+1}} \cdots P_{i_{m+n-1}, i_{m+n}}}{\mathbb{P}\left(X_{m}=i\right)} \\
& =\delta_{i i_{m}} P_{i, i_{m+1}} \cdots P_{i_{m+n-1}, i_{m+n}} \mathbb{P}\left(H \mid X_{m}=i\right),
\end{aligned}
$$

as required.
Then for a general H, we can write it as the disjoint union $H=\bigcup_{k=1}^{\infty} H_{k}$, and then the overall result follows by summing the above result for relevant H_{k}.

§1.3 Transition Probabilities

We are now going to address how to find the probability that a Markov chain is in a given state after n steps. The core idea of this section is that we will be able to reduce such questions into questions about the transition matrix that we introduced earlier.

Recall that if X_{n} is a Markov chain with transition matrix P, then $P_{i, j}$ was the probability
of moving from the state i to the state j. We call these the one-step transition probabilities. We can generalize this slightly.

Definition 1.4 (n-Step Transition Probabilities)
For a Markov chain X_{n}, the n-step transition probabilities are given by

$$
p_{i, j}(n)=\mathbb{P}\left(X_{n}=j \mid X_{0}=i\right) .
$$

These n-step transition probabilities naturally form the n-step transition matrix $P(n)=\left(p_{i, j}(n) \mid i, j \in S\right)$. The nice thing about writing these transition probabilities as a matrix is that they satisfy a lovely set of equations that relate extremely well to matrix algebra.

Theorem 1.5 (Chapman-Kolmogorov Equations)
We have that

$$
p_{i, j}(n+m)=\sum_{k \in S} p_{i, k}(n) p_{k, j}(m),
$$

where $i, j \in S$ and $m, n \geq 0$. In particular, $P(m+n)=P(m) P(n)$.

Proof. Using the partition theorem and simple Markov property,

$$
\begin{aligned}
p_{i, j}(n+m) & =\mathbb{P}\left(X_{n+m}=j \mid X_{0}=i\right) \\
& =\sum_{k \in S} \mathbb{P}\left(X_{m+n}=j \mid X_{n}=k, X_{0}=i\right) \mathbb{P}\left(X_{n}=k \mid X_{0}=i\right) \\
& =\sum_{k \in S} \mathbb{P}\left(X_{m+n}=j \mid X_{n}=k\right) \mathbb{P}\left(X_{n}=k \mid X_{0}=i\right) \\
& =\sum_{k \in S} p_{i, k}(n) p_{k, j}(m) .
\end{aligned}
$$

So, if we have some n-step transition matrix $P(n)$, the above result shows us that it satisfies $P(n)=P^{n}$. This reduces our problem to just this:

To compute $p_{i, j}(n)$, we can compute powers of the transition matrix, and take $\left(P^{n}\right)_{i, j}$.
In general, this makes our problem significantly easier, and if the state space is finite, we can use tools from linear algebra such as diagonalisation.

Example 1.6 (Computing Transition Probabilities)

Let $\alpha, \beta \in(0,1)$. Consider the Markov chain X_{n} with states $S=\{1,2\}$, with transition matrix

$$
P=\left(\begin{array}{cc}
1-\alpha & \alpha \\
\beta & 1-\beta
\end{array}\right) .
$$

A diagram of this markov chain is shown below.

We want to find the n-step transition probabilities.
Method 1 (Difference Equations). We are first going to find $p_{1,1}(n)$ using a 'barehands' method. By the Chapman-Kolmogorov equations (that is, conditioning on X_{n}) we have

$$
\begin{aligned}
p_{1,1}(n+1) & =p_{1,1}(n) p_{1,1}(1)+p_{1,2}(n) p_{2,1}(1) \\
& =(1-\alpha) p_{1,1}(n)+\beta p_{1,2}(n) \\
& =(1-\alpha) p_{1,1}(n)+\beta\left(1-p_{1,1}(n)\right) \\
& =p_{1,1}(n)(1-\alpha-\beta)+\beta .
\end{aligned}
$$

This is a recurrence relation which we can then solve using the boundary condition $p_{1,1}(0)=1$ to get

$$
p_{1,1}(n)= \begin{cases}\frac{\alpha}{\alpha+\beta}+\frac{\alpha}{\alpha+\beta} \cdot(1-\alpha-\beta)^{n} & \text { if } \alpha+\beta>0 \\ 1 & \text { if } \alpha+\beta=0\end{cases}
$$

Method 2 (Diagonalisation). An alternative solution uses some tools from matrix algebra. To calculate the n-step transition matrix P^{n}, we are going to diagonalise P.

The eigenvalues of P are given by the solutions to $\operatorname{det}(P-\mu I)=0$, which are $\{1,1-\alpha-\beta\}$. Thus for some invertible matrix U we have

$$
P=U^{-1}\left(\begin{array}{cc}
1 & 0 \\
0 & 1-\alpha-\beta
\end{array}\right) U \quad \text { and } \quad P^{n}=U^{-1}\left(\begin{array}{cc}
1 & 0 \\
0 & (1-\alpha-\beta)^{n}
\end{array}\right) U .
$$

Thus $p_{1,1}(n)=A+B(1-\alpha-\beta)^{n}$, for constants A and B. We can find these by noting the boundary conditions $p_{1,1}(0)=1$ and $p_{1,1}(1)=1-\alpha$, giving

$$
p_{1,1}(n)= \begin{cases}\frac{\alpha}{\alpha+\beta}+\frac{\alpha}{\alpha+\beta} \cdot(1-\alpha-\beta)^{n} & \text { if } \alpha+\beta>0 \\ 1 & \text { if } \alpha+\beta=0\end{cases}
$$

In general, if the state space of a Markov chain is finite with $|S|=k$, then P is a $k \times k$ matrix with eigenvalues μ_{1}, \ldots, μ_{k}.
If all of the eigenvalues are distinct, then P is diagonalisable, and we can write

$$
P=U^{-1}\left(\begin{array}{ccc}
\mu_{1} & \cdots & 0 \\
0 & \ddots & 0 \\
0 & \cdots & \mu_{k}
\end{array}\right) U \quad \text { and } \quad P^{n}=U^{-1}\left(\begin{array}{ccc}
\mu_{1}^{n} & \cdots & 0 \\
0 & \ddots & 0 \\
0 & \cdots & \mu_{k}^{n}
\end{array}\right) U
$$

and $p_{i, j}=a_{1} \mu_{1}^{n}+\cdots+a_{k} \mu_{k}^{n}$, for some constants a_{1}, \ldots, a_{k}, which are determined by the boundary conditions.
If some eigenvalue μ_{k} is complex, then it's conjugate is also an eigenvalue, so if $\mu_{k}=r e^{i \theta}$
we have also the eigenvalue $\overline{\mu_{k}}=r e^{-i \theta}$, and we can write

$$
p_{i, j}=a_{1} \mu_{1}^{n}+\cdots+a_{k-2} \mu_{k-2}^{n}+a_{k-1} r^{n} \cos (n \theta)+a_{k} r^{n} \sin (n \theta)
$$

since $p_{i, j}$ is real and so all of the imaginary parts must cancel out.
If some eigenvalues repeat, then the situation is slightly more complicated. If an eigenvalue μ_{k} has multiplicity m, we can simply replace a_{k} by a degree m polynomial in n^{2}.

Example 1.7 (Transition Matrix with Complex Eigenvalues)

Consider the markov chain X_{s} with states $S=\{1,2,3\}$ as shown in the diagram below. We want to find the n-step transition probability $p_{i, i}(n)$.

This Markov chain has the transition matrix

$$
P=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 1 / 2 & 1 / 2 \\
1 / 2 & 0 & 1 / 2
\end{array}\right)
$$

which has distinct eigenvalues $\{1, i / 2,-i / 2\}$.
We can rewrite the complex eigenvalues using trigonometric functions as

$$
\begin{aligned}
\frac{i}{2} & =\cos \frac{\pi}{2}+i \sin \frac{\pi}{2} \\
-\frac{i}{2} & =\cos \frac{\pi}{2}-i \sin \frac{\pi}{2}
\end{aligned}
$$

The general form for $p_{1,1}(n)$ is then given by

$$
p_{1 n 1}(n)=A+B \cdot\left(\frac{1}{2}\right)^{n} \cos \left(\frac{n \pi}{2}\right)+C \cdot\left(\frac{1}{2}\right)^{n} \sin \left(\frac{n \pi}{2}\right)
$$

The boundary conditions can be computed by hand as $p_{1,1}(0)=1, p_{1,1}(1)=0$ and $p_{1,1}(2)=0$. This allows us to solve for A, B and C to get

$$
p_{1,1}(n)=\frac{1}{5}+\left(\frac{1}{2}\right)^{n}\left(\frac{4}{5} \cos \left(\frac{n \pi}{2}\right)-\frac{2}{5} \sin \left(\frac{n \pi}{2}\right)\right)
$$

[^1]
§2 Class Structure

§2.1 Communicating Classes

In Graph Theory, one can often make a problem easier by looking at the connected components of the graph, effectively splitting it up into smaller disconnected chunks which are easier to understand on their own. This has a natural analogue in the study of Markov chains, ${ }^{3}$ where we consider which states can interact.

Definition 2.1 (Communication)

Let X_{n} be a Markov chain. For $i, j \in S$, we say that i leads to j, written $i \rightarrow j$, if $p_{i, j}(n)>0$ for some $n \geq 0$.
If $i \rightarrow j$ and $j \rightarrow i$, we say that i and j communicate, and write $i \leftrightarrow j$.
We can use this idea of communication to break up our state space by noting that communication is an equivalence relation.

Theorem 2.2 (Communication is an Equivalence Relation)
The relation \leftrightarrow is an equivalence relation on S.

Proof. For any $i \in S, p_{i, i}(0)=1$ and thus $i \leftrightarrow i$, so the relation is reflexive. The relation is symmetric by definition, so we are just left to check transitivity.

Let $i, j, k \in S$, and suppose that $i \leftrightarrow j$ and $k \leftrightarrow k$. Then there exists $m, n \geq 0$ such that $p_{i, j}(n)>0$ and $p_{j, k}(m)>0$. Then by the Chapman-Kolmogorov equations,

$$
p_{i, k}(m+n)=\sum_{l \in S} p_{i, l}(m) p_{l, k}(n) \geq p_{i, j}(n) p_{j, k}(m)>0,
$$

so $i \rightarrow k$. By the same argument $k \rightarrow i$, and thus \leftrightarrow is transitive.
Because communication is an equivalence relation, it partitions the state space.

Definition 2.3 (Communicating Classes)

The equivalence classes induced by \longleftrightarrow on S are called communicating classes.

Because communication is really a notion about directed graphs (and not really about individual probabilities), it's usually relatively easy to identify the communicating classes from the diagram of a Markov chain.

For example, the Markov chain below has its communicating classes coloured (and the transition probabilities are not labelled, as they are not needed to infer the communicating classes, aside from knowing they are non-zero along each edge).

[^2]

In the Markov chain above, we can see that there are a few different ways that communicating classes can appear.

A communicating class C is closed if there is no way to leave it, in that if $i \in C$ and $i \rightarrow j$, then j in C. For example, in the Markov chain above, the communicating class $\{1,2\}$ is closed.
A state $i \in S$ is absorbing if there is no way to leave that state, that is, $\{i\}$ is a communicating class. In the Markov chain above, 4 is absorbing.

If a Markov chain has only one communicating class, we call is irreducible, as we cannot split it into smaller parts in this way.

§3 Hitting Times, Stopping Times and Absorption Probabilities

§3.1 Hitting Times

When studying Markov chains, a frequently occurring question is 'how long does it take to reach a given state $i \in S$?', a concept which we formulate as the hitting time.

Definition 3.1 (Hitting Time)

Let X_{n} be a Markov chain. The hitting time of some subset of states $A \subseteq S$ is the random variable T_{A}, which is the least n for which $T_{n} \in A$. In particular,

$$
T_{A}=\inf \left\{n \geq 0 \mid X_{n} \in A\right\}
$$

where this may be ∞ if $X_{n} \notin A$ for all $n \geq 0$.

In this section, we will also look some related quantities, such as the hitting probability and mean hitting time.

Definition 3.2 (Hitting Probability)

Let X_{n} be a Markov chain, and let $A \subseteq S$ be some subset of states. The hitting probability h_{i}^{A} of A is the probability that X_{n} eventually reaches a state in A, given $X_{0}=i$. That is,

$$
h_{i}^{A}=\mathbb{P}\left(T_{A}<\infty \mid X_{0}=i\right)
$$

where $i \in S$.

Definition 3.3 (Mean Hitting Time)

Let X_{n} be a Markov chain, and let $A \subseteq S$ be some subset of states. The mean hitting time k_{i}^{A} of A is the expected number of steps taken for X_{n} to reach a state in A, given $X_{0}=i$. That is,

$$
k_{i}^{A}=\mathbb{E}\left[T_{A} \mid X_{0}=i\right]
$$

where $i \in S$. We note that this may be ∞.

So how do we go about calculating these quantities? An intuitive way is to try and consider what happens as we move from one state to another, as we will see in the example below.

Example 3.4 (Computing Hitting Probabilities and Mean Hitting Times)

Consider the Markov chain in the diagram below.

Suppose we took $A=\{4\}$ and wanted to find the hitting probability $h_{2}^{A}=\mathbb{P}\left(T_{A}<\right.$ $\infty \mid X_{0}=2$). One might intuitively suppose that

$$
\begin{aligned}
& h_{2}^{A}=P_{2,3} h_{3}^{A}=\frac{1}{2} h_{3}^{A} \\
& h_{3}^{A}=P_{3,2} \cdot h_{2}^{A}+P_{3,4} \cdot h_{4}^{A}=\frac{1}{2} \cdot h_{2}^{A}+\frac{1}{2}
\end{aligned}
$$

which when solved gives us $h_{2}^{A}=1 / 3$.
Alternative, if we took $B=\{1,4\}$ and wanted to find the mean hitting time k_{2}^{B}, we could again try the intuitive approach of writing

$$
k_{2}^{B}=1+\frac{1}{2} k_{3}^{B}
$$

and noting that $k_{3}^{B}=k_{2}^{B}$ by symmetry, giving $k_{2}^{B}=2$.

In the computations above, we really should check that these are valid methods (though it really is quite intuitive).

Theorem 3.5 (Computing Hitting Probabilities)

Let $A \subseteq S$. Then the set of hitting probabilities $h^{A}=\left(h_{i}^{A} \mid i \in S\right)$ is the minimal ${ }^{a}$ non-negative solution to the equations

$$
h_{i}^{A}= \begin{cases}1 & \text { if } i \in A \\ \sum_{j \in S} P_{i, j} h_{j}^{A} & \text { if } i \notin A\end{cases}
$$

[^3]Proof. We first check that h_{i} solves this system. Clearly if $i \in A$, then $h_{i}^{A}=1$, so take $i \in S \backslash A$. Then conditioning on the first step in the chain,

$$
\begin{aligned}
h_{i}^{A} & =\sum_{j \in S} P_{i, j} \mathbb{P}\left(T_{A}<\infty \mid X_{0}=i, X_{1}=j\right) \\
& =\sum_{j \in S} P_{i, j} h_{j}^{A}
\end{aligned}
$$

by the simple Markov property. So h_{i} does indeed solve this system.
We now check minimality. Let $x=\left(x_{i} \mid i \in S\right)$ be another non-negative solution. For $i \in A$, we have $x_{i}=h_{i}^{A}=1$, so that holds. Then for $i \in S \backslash A$, since x satisfies the system of equations we can write

$$
x_{i}=\sum_{j \in S} P_{i, j} x_{j}=\sum_{j \in A} P_{i, j} x_{j}+\sum_{j \in S \backslash A} P_{i, j} x_{j} .
$$

Then with $x_{j}=1$ for $j \in A$ and $x \geq 0$, we have

$$
x_{i} \geq \sum_{j \in A} P_{i, j}=\mathbb{P}\left(X_{1} \in A \mid X_{0}=i\right)=\mathbb{P}\left(T_{A}<2 \mid X_{0}=i\right)
$$

Similarily, expanding (\dagger), we have

$$
\begin{aligned}
x_{i} & =\mathbb{P}\left(X_{1} \in A \mid X_{0}=i\right)+\sum_{j \in S \backslash A} P_{i, j}\left(\sum_{k \in A} P_{j, k} x_{k}+\sum_{k \in S \backslash A} P_{j, k} x_{k}\right) \\
& \geq \mathbb{P}\left(X_{1} \in A \mid X_{0}=i\right)+\mathbb{P}\left(X_{1} \notin A, X_{2} \in A \mid X_{0}=i\right) \\
& =\mathbb{P}\left(T_{A}<3 \mid X_{0}=1\right) .
\end{aligned}
$$

We can repeat this argument to eventually establish that $x_{i} \geq \mathbb{P}\left(T_{A}<n \mid X_{0}=i\right)$, for all $n \geq 0$. Then as $n \rightarrow \infty$, we have $x_{i} \geq \mathbb{P}\left(T_{A}<\infty \mid X_{0}=i\right)$, as required.

This method of computing hitting probabilities is perfectly valid on Markov chains with infinite state spaces.

Example 3.6 (Hitting Probabilities on an Infinite State Space)

Consider the Markov chain with states $S=\{0,1, \ldots\}$ such that $P_{0,1}=1$, and

$$
P_{i, i+1}=p, \quad P_{i, i-1}=q \quad \text { for all } i \geq 1
$$

where $p, q \in(0,1)$ with $p+q=1$.

Let $h_{i}=\mathbb{P}\left(T_{0}<\infty \mid X_{0}=i\right)$, and suppose that $p \neq q$. Then we clearly have $h_{0}=1$, and generally we can write down the recurrence

$$
h_{i}=p h_{i+1}+q h_{i-1} .
$$

This then implies $p\left(h_{i+1}-h_{i}\right)=q\left(h_{i}-h_{i-1}\right)$, so that

$$
h_{i+1}-h_{i}=\left(\frac{q}{p}\right)^{i}\left(h_{1}-1\right) .
$$

This inspires us to write h_{i} as a telescoping sum

$$
\begin{aligned}
h_{i} & =\sum_{j=1}^{i}\left(h_{j}-h_{j-1}\right)+1 \\
& =\left(h_{1}-1\right) \sum_{j=1}^{i}\left(\frac{q}{p}\right)^{j}+1,
\end{aligned}
$$

which gives us our general solution $h_{i}=a+b(q / p)^{i}$, which we can then solve.
In the case that $q>p$, then in order for h_{i} to be the minimal solution, we need to have $a=1$ and $b=0$, so $h_{i}=1$.

We also need to check that our method for calculating the mean hitting time was valid.

Theorem 3.7 (Computing Mean Hitting Times)

Let $A \subseteq S$. Then the set of mean hitting times $k^{A}=\left(k_{i}^{A} \mid i \in S\right)$ is the minimal non-negative solution to the equations

$$
k_{i}^{A}= \begin{cases}0 & \text { if } i \in A, \\ 1+\sum_{j \in S \backslash A} P_{i, j} k_{j}^{A} & \text { if } i \notin A .\end{cases}
$$

Proof. We first check that k_{i} solves this system. Clearly if $i \in A$, then $k_{i}^{A}=0$, so take $i \in S \backslash A$. Then conditioning on the first step in the chain,

$$
\begin{aligned}
k_{i}^{A} & =\sum_{j \in S} P_{i, j} \mathbb{E}\left[T_{A} \mid X_{0}=i, X_{1}=j\right] \\
& =\sum_{j \in S} P_{i, j}\left(1+\mathbb{E}\left[T_{A} \mid X_{0}=j\right]\right) \\
& =1+\sum_{j \in S} P_{i, j} k_{j}^{A},
\end{aligned}
$$

which is equivalent to our original sum.
We now show that the solution is minimal. Let $y=\left(x_{i} \mid i \in S\right)$ be another nonnegative solution. Then for $i \in A$ we have $y_{i}=k_{i}^{A}=0$, so consider $i \in S \backslash A$. We can then write

$$
\begin{aligned}
y_{i} & =1+\sum_{j \in S \backslash A} P_{i, j} y_{j} \\
& =1+\sum_{j \in S \backslash A} P_{i, j}\left(1+\sum_{k \in S \backslash A} P_{j, k} y_{k}\right) \\
& \geq \mathbb{P}\left(T_{A} \geq 1 \mid X_{0}=i\right)+\mathbb{P}\left(T_{A} \geq 2 \mid X_{0}=1\right) .
\end{aligned}
$$

By iterating this, we obtain

$$
y_{i} \geq \sum_{m=1}^{n} \mathbb{P}\left(T_{A} \geq m \mid X_{0}=i\right)
$$

and taking the limit as $n \rightarrow \infty$, this gives

$$
y_{i} \geq \sum_{m=1}^{\infty} \mathbb{P}\left(T_{A} \geq m \mid X_{0}=i\right)=k_{i}^{A}
$$

where we note that for a random variable M taking non-negative integer values we have $\mathbb{E}[M]=\sum_{m=1}^{\infty} \mathbb{P}(M \geq m)$.

So it does work, how lovely.

§3.2 Stopping Times and the Strong Markov Property

We previously proved the simple Markov property, that conditional on the value of a Markov chain at a given time m, the future is independent of the past. This property required that we take some fixed time m - but what if m itself is random? It's not true in general ${ }^{4}$ that the Markov property still holds for an arbitrary random time, but it is true for certain kinds of times.

Definition 3.8 (Stopping Times)

A random time $T: \Omega \rightarrow\{0,1, \ldots\} \cup\{\infty\}$ is a stopping time for a Markov chain X_{n} if for all $n \geq 0$ the event $\{T=n\}$ is given in terms of $X_{0}, X_{1}, \ldots, X_{n}$ only.

In particular, random times that 'look into the future' are not stopping times. A straightforward example of a stopping time is the hitting time T^{A} that we defined in the previous section.

With stopping times, we can indeed make a statement similar to the Markov property using random times.

Theorem 3.9 (Strong Markov Property)
Let X_{n} be a Markov chain with transition matrix P, and let T be a stopping time. Then conditional on $T<\infty$ and $X_{T}=i$, the sequence of random variables $\left(X_{T+n}\right)_{n \geq 0}$ is $\operatorname{Markov}\left(\delta_{i}, P\right)$ and is independent of X_{0}, \ldots, X_{T}.

Proof. Let H be an event given in terms of X_{0}, \ldots, X_{T-1}. Then it suffices to show that

$$
\begin{aligned}
& \mathbb{P}\left(X_{T+1}=i_{1}, \ldots, X_{T+n}=i_{n}, H \mid T<\infty, X_{T}=i\right) \\
& =\mathbb{P}\left(X_{1}=i_{1}, \ldots, X_{n}=i_{n} \mid X_{0}=i\right) \mathbb{P}\left(H \mid T<\infty, X_{T}=i\right)
\end{aligned}
$$

The event $H \cap\{T=m\}$ is given in terms of $X_{1}, X_{2}, \ldots, X_{m}$ only. Furthermore,

[^4]$X_{T}=X_{m}$ when $T=m$. We condition on the event $H \cap\{T=m\} \cap\left\{X_{m}=i\right\}$ and use the simple Markov property at time m to get
\[

$$
\begin{aligned}
& \mathbb{P}\left(X_{T+1}=i_{1}, \ldots, X_{T+n}=i_{n}, H \mid T<\infty, X_{T}=i\right) \\
& =\mathbb{P}\left(X_{1}=i_{1}, \ldots, X_{n}=i_{n}\right) \mathbb{P}\left(H, T=m, X_{T}=i\right) .
\end{aligned}
$$
\]

Summing this over $m=0,1, \ldots$ and dividing by $\mathbb{P}\left(T<\infty, X_{T}=i\right)$ then gives the desired result.

§3.3 Recurrence and Transience

We now consider states that a Markov chain continues to come back to, or only visits finitely many times.

Lemma 3.10 (Probability of Repeated Visiting)
$\mathbb{P}\left(V_{i}>r \mid X_{0}=i\right)=f_{i}^{r}$, for all $r \in \mathbb{N}$.

Proof. Suppose it is true for r. We need to show that

$$
\begin{aligned}
\mathbb{P}\left(V_{i}>r+1 \mid X_{0}=i\right) & =\mathbb{P}\left(T_{i}^{(r+1)}<\infty \mid X_{0}=i\right)=\mathbb{P}\left(T_{i}^{(r+1)}<\infty, T_{i}^{(r)}<\infty\right) \\
& =\mathbb{P}\left(T_{i}^{(r+1)}<\infty \mid T_{i}^{(r)}<\infty, T_{0}=i\right) \cdot \mathbb{P}\left(T_{i}^{(r)}<\infty \mid X_{0}=i\right) \\
& =\mathbb{P}\left(T_{i}^{(r+1)}<\infty \mid T_{i}^{(r)}<\infty, T_{0}=i\right) \cdot f_{i}^{r} .
\end{aligned}
$$

By the strong Markov property applied to $T_{i}^{(r)}$ (which is a stopping time), we get

$$
\mathbb{P}\left(T_{i}^{(r+1)}<\infty \mid X_{0}=i\right)=\mathbb{P}\left(T_{i}<\infty \mid X_{0}=i\right)=f_{i},
$$

and thus our result holds.

Theorem 3.11 (Recurrence and Transience Criterion)

Let X_{n} be a markov chain with transition matrix P, and let $i \in S$. Then we have the following dichotomy:
(1) If $\mathbb{P}\left(T_{i}<\infty \mid X_{0}=i\right)=1$, then i is recurrent and $\sum_{n=0}^{\infty} p_{i, i}(n)$ is infinite.
(2) If $\mathbb{P}\left(T_{i}<\infty \mid X_{0}=i\right)<1$, then i is transient and $\sum_{n=0}^{\infty} p_{i, i}(n)<\infty$.

Proof. We can write V_{i} using indicator functions as $V_{i}=\sum_{n=0}^{\infty} \mathbb{1}\left[X_{n}=1\right]$, and then by linearity of expectation we can write

$$
\mathbb{E}\left[V_{i} \mid X_{0}=i\right]=\sum_{n=0}^{\infty} \mathbb{P}\left(X_{m}=i \mid X_{0}=i\right)=\sum_{n=0}^{\infty} p_{i, i}(n) .
$$

Part (1). If $f_{i}=1$, then for all r we have $\mathbb{P}\left(V_{i}>r \mid X_{0}=i\right)=1$, and thus $\mathbb{P}\left(V_{i}=\infty \mid X_{i}=0\right)=1$, implying that i is recurrent, and $\mathbb{E}\left[V_{i} \mid X_{0}=i\right]=\infty$, implying that $\sum_{n=0}^{\infty} p_{i, i}(n)=\infty$.

Part (2). If $f_{i}<1$, then by the previous lemma we have $\mathbb{E}\left[V_{i} \mid X_{0}=i\right]=1 /\left(1-f_{i}\right)<$ ∞, implying that $\mathbb{P}\left(V_{i}<\infty \mid X_{0}=i\right)=1$, so i is transient, and $\sum_{n=0}^{\infty} p_{i, i}(n)$.

Theorem 3.12 (Recurrence and Transience of Communicating States)

Let x and y be two states that communicate. Then either they are both recurrent or they are both transient.

Proof. Suppose that x is recurrent. We will show that y is also recurrent. Since $x \rightarrow y$, there is some $m, l \in \mathbb{N}$ such that $p_{x, y}(m)>0$ and $p_{y, x}(l)>0$. Then we know that $\sum_{n=0}^{\infty} p_{x, x}(n)=\infty$, and then

$$
\begin{aligned}
\sum_{n=0}^{\infty} p_{y, y}(n) & \geq \sum_{n=0}^{\infty} p_{y, y}(n+m+l) \\
& \geq \sum_{n=0}^{\infty} p_{y, x}(l) p_{x, x}(n) p_{x, y}(m) \\
& \geq p_{y, x}(l) p_{x, y}(m) \sum_{n=0}^{\infty} p_{x, x}(n)=\infty
\end{aligned}
$$

This immediately can be applied to the entire class structure of a Markov chain.

Corollary 3.13 (Class Structure of Recurrence and Transience)

Either all of the states in a communicating class are recurrent or they are all transient.

Recurrent communicating classes have a certain flavour to them, which should be intuitive. Really, for a communicating class to be recurrent we have to avoid getting stuck outside of that given communicating class. This forces closure of the communicating class.

Theorem 3.14 (Closure of Recurrent Communicating Classes)
If C is a recurrent communicating class, then it must be closed.

Proof. Suppose that C was not closed. Then there exists $x \in C$ and $Y \notin C$ such that $x \rightarrow y$. Let n be such that $p_{x, y}(n)>0$. If starting from x we hit y at some point, then we can never visit x again so

$$
\mathbb{P}\left(V_{x}<\infty \mid X_{0}=x\right) \geq \mathbb{P}\left(X_{m}=y \mid X_{0}=x\right)=p_{x, y}(m)>0,
$$

so x is not current which is a contradiction.

Theorem 3.15 (Finite Closed Classes are Recurrent)
A finite closed class is recurrent.

Proof Sketch. Pick any state x in the class. By pigeonhole there's another recurrent state y communicating with x. Then there's positive probability of moving from x to y and y to x, and this implies that x is also recurrent.

Theorem 3.16

Let P be irreducible and recurrent. Then for all x and $Y, \mathbb{P}\left(T_{y}<\infty \mid X_{0}=x\right)=1$.

Proof. Omitted.

§3.4 Recurrence an Transience for Random Walks in \mathbb{Z}^{n}

We now turn our attention to simple random walks in low and high dimensions, and in particular at an interesting result due to Pólya which informally says

A drunk man will find his way home, but a drunk bird may get lost forever.

Theorem 3.17 (Pólya)

A simple random walk in \mathbb{Z}^{d} is recurrent for $d=1$ and $d=2$ and transient for $d \geq 3$.
Let's first consider the case of a random walk on \mathbb{Z}.

Proof (a simple random walk on \mathbb{Z} is recurrent). Test

[^0]: ${ }^{1}$ You might notice that these diagrams are labelled directed graphs, and indeed you will see concepts from graph theory such as connectivity reoccur when we later talk about communicating classes.

[^1]: ${ }^{2}$ This comes from considering the Jordan Normal form of the transition matrix.

[^2]: ${ }^{3}$ Indeed, one can view a Markov chain as a labelled directed graph, and then apply the same connected components argument to obtain the theory shown here.

[^3]: ${ }^{a}$ Minimal in that if x is another non-negative solution, then $x_{i} \geq h_{i}^{A}$ for all $i \in S$.

[^4]: ${ }^{4}$ For example, let T be the first time that a Markov chain hits some value i. Then if we condition on time $T-1$, the future is then determined since the next step will be to i ! You will see that this type of event is not allowed in our definition of stopping times.

