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A stochastic process is said to have the ‘Markov property’ if, conditional on its present
value, the future is independent of the past. This is a restrictive assumption, but we do
end up with a useful model with a rich mathematical theory, which we shall study in
this course.

This article constitutes my notes for the ‘Markov Chains’ course, held in Michaelmas 2021
at Cambridge. These notes are not a transcription of the lectures, and differ significantly
in quite a few areas. Still, all lectured material should be covered.
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§1 The Markov Property

§1.1 What is a Markov Chain?

Let S be a countable set (the set of possible ‘states’), and let Xn be a sequence of random
variables taking values in S.

Definition 1.1 (Markov Chain)

The sequence of random variables Xn is a Markov chain if it satisfies the Markov
property

P(Xn+1 = xn+1 | Xn = xn, . . . , X0 = x0) = P(Xn+1 = xn+1 | Xn = xn).
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The Markov chain is said to be homogeneous if for all i, j ∈ S the conditional
probability P(Xn+1 = j | Xn = i) is independent of n.

In this course we are only going to study homogeneous Markov chains.

Markov chains are often best described by diagrams1 which show the probability of
moving from one state to another. For example, the Markov chain in the diagram below
has three states which we label {1, 2, 3}, and the probability of moving from state 1 to
state 2 is 1/2, and the probability of moving from state 2 to state 3 is 1/3, and so on.

1 2

3

1
2

1
2

2
3

1
3

1
3

1

In general, to calculate the probabilities associated with a Markov chain, we need to
know two quantities.

• The initial distribution. We first need to know about the starting state of a Markov
chain. This is described by the initial distribution λ = (λi | i ∈ S), where λi =
P(X0 = i).

• The transition probabilities. We also need to know the probability of moving from
a state i ∈ S to a state j ∈ S. This is typically given by a transition matrix
P = (Pi,j | i, j ∈ S) with pi,j = P(X1 = j | X0 = i).

These quantities are of course subject to some constraints, in that we require
∑

i∈S λi = 1
and the transition matrix P must be stochastic, in that

∑
j∈S Pi,j = 1 for all i ∈ S.

If a Markov chain Xn has initial distribution λ and transition matrix P , we say that it
is Markov(λ, P ).

Once we have these quantities, we can begin to actually establish various properties about
the Markov chain, for example the probability that it goes through a given sequence of
states.

Theorem 1.2 (Probability of a Sequence of States)

The sequence of random variables Xn is Markov(λ, P ) if and only if

P(X0 = i0, X1 = i1, . . . , Xn = in) = λi0Pi0,i1 · · ·Pin−1,in ,

for all n ≥ 0 and i0, . . . , in ∈ S.

Proof. Let Ak denote the event {Xk = ik}. First suppose that Xn is Markov(λ, P ).
We prove the result holds by induction. For n = 0 this is true by definition. Then

1You might notice that these diagrams are labelled directed graphs, and indeed you will see concepts
from graph theory such as connectivity reoccur when we later talk about communicating classes.
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if it holds up to n, we have

P(A0 ∩ · · · ∩An) = P(A0 ∩ · · · ∩An−1)P(An | A0 ∩ · · · ∩An−1)
= P(A0 ∩ · · · ∩An−1)P(An | An−1)
=
(
λi0Pi0,i1 · · ·Pin−2,in−1

)
Pin−1,in ,

which completes our induction.

Conversely, suppose that the result holds. Then with n = 0 we get that the initial
distribution of Xn is λ. Then

P(An+1 | A0 ∩ · · · ∩An) =
P(A0 ∩ · · · ∩An+1)

P(A0 ∩ · · · ∩An)
= Pin,in+1 .

Since this does not depend on i0, . . . , in−1, Xn is a homogeneous Markov chain with
transition matrix P , as required.

§1.2 Simple Markov Property

An important aspect of Markov chains is that they are memoryless, in the future is
independent of the past, conditional on the present. This is encapsulated in the simple
Markov property.

Theorem 1.3 (Simple Markov Property)

Let Xn be a Markov chain. Then conditional on Xm = i, the sequence of random
variables (Xm+n)n≥0 isa Markov(δi, P ), and is independent of X0, . . . , Xm−1.

aHere δij is 1 if i = j and 0 otherwise.

Proof. Given any event H determined by X0, . . . , Xm−1, we want to show that for
an event F = {Xm = im, . . . Xm+n = im+n} we have

P(H ∩ F | Xm = i) = δiimPim,im+1 · · ·Pim+n−1,im+nP(H | Xm = i).

Indeed, considering the case of H = {X0 = i0, . . . , Xm = im} we have

P(H ∩ F | Xm = i) =
λi0Pi0,i1 · · ·Pim−1,iPi,im+1 · · ·Pim+n−1,im+n

P(Xm = i)

= δiimPi,im+1 · · ·Pim+n−1,im+nP(H | Xm = i),

as required.

Then for a general H, we can write it as the disjoint union H =
⋃∞
k=1Hk, and then

the overall result follows by summing the above result for relevant Hk.

§1.3 Transition Probabilities

We are now going to address how to find the probability that a Markov chain is in a
given state after n steps. The core idea of this section is that we will be able to reduce
such questions into questions about the transition matrix that we introduced earlier.

Recall that ifXn is a Markov chain with transition matrix P , then Pi,j was the probability
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of moving from the state i to the state j. We call these the one-step transition
probabilities. We can generalize this slightly.

Definition 1.4 (n-Step Transition Probabilities)

For a Markov chain Xn, the n-step transition probabilities are given by

pi,j(n) = P(Xn = j | X0 = i).

These n-step transition probabilities naturally form the n-step transition matrix
P (n) = (pi,j(n) | i, j ∈ S). The nice thing about writing these transition probabilities
as a matrix is that they satisfy a lovely set of equations that relate extremely well to
matrix algebra.

Theorem 1.5 (Chapman-Kolmogorov Equations)

We have that
pi,j(n+m) =

∑
k∈S

pi,k(n)pk,j(m),

where i, j ∈ S and m,n ≥ 0. In particular, P (m+ n) = P (m)P (n).

Proof. Using the partition theorem and simple Markov property,

pi,j(n+m) = P(Xn+m = j | X0 = i)

=
∑
k∈S

P(Xm+n = j | Xn = k,X0 = i)P(Xn = k | X0 = i)

=
∑
k∈S

P(Xm+n = j | Xn = k)P(Xn = k | X0 = i)

=
∑
k∈S

pi,k(n)pk,j(m).

So, if we have some n-step transition matrix P (n), the above result shows us that it
satisfies P (n) = Pn. This reduces our problem to just this:

To compute pi,j(n), we can compute powers of
the transition matrix, and take (Pn)i,j .

In general, this makes our problem significantly easier, and if the state space is finite,
we can use tools from linear algebra such as diagonalisation.

Example 1.6 (Computing Transition Probabilities)

Let α, β ∈ (0, 1). Consider the Markov chain Xn with states S = {1, 2}, with
transition matrix

P =

(
1− α α
β 1− β

)
.

A diagram of this markov chain is shown below.
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1 2

1− α

α

β

1− β

We want to find the n-step transition probabilities.

Method 1 (Difference Equations). We are first going to find p1,1(n) using a ‘bare-
hands’ method. By the Chapman-Kolmogorov equations (that is, conditioning on
Xn) we have

p1,1(n+ 1) = p1,1(n)p1,1(1) + p1,2(n)p2,1(1)

= (1− α)p1,1(n) + βp1,2(n)

= (1− α)p1,1(n) + β(1− p1,1(n))

= p1,1(n)(1− α− β) + β.

This is a recurrence relation which we can then solve using the boundary condition
p1,1(0) = 1 to get

p1,1(n) =

{
α

α+β + α
α+β · (1− α− β)n if α+ β > 0,

1 if α+ β = 0.

Method 2 (Diagonalisation). An alternative solution uses some tools from matrix
algebra. To calculate the n-step transition matrix Pn, we are going to diagonalise
P .

The eigenvalues of P are given by the solutions to det(P − µI) = 0, which are
{1, 1− α− β}. Thus for some invertible matrix U we have

P = U−1
(

1 0
0 1− α− β

)
U and Pn = U−1

(
1 0
0 (1− α− β)n

)
U.

Thus p1,1(n) = A + B(1 − α − β)n, for constants A and B. We can find these by
noting the boundary conditions p1,1(0) = 1 and p1,1(1) = 1− α, giving

p1,1(n) =

{
α

α+β + α
α+β · (1− α− β)n if α+ β > 0,

1 if α+ β = 0.

In general, if the state space of a Markov chain is finite with |S| = k, then P is a k × k
matrix with eigenvalues µ1, . . . , µk.

If all of the eigenvalues are distinct, then P is diagonalisable, and we can write

P = U−1

µ1 · · · 0

0
. . . 0

0 · · · µk

U and Pn = U−1

µ
n
1 · · · 0

0
. . . 0

0 · · · µnk

U,

and pi,j = a1µ
n
1 + · · ·+akµ

n
k , for some constants a1, . . . , ak, which are determined by the

boundary conditions.

If some eigenvalue µk is complex, then it’s conjugate is also an eigenvalue, so if µk = reiθ
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we have also the eigenvalue µk = re−iθ, and we can write

pi,j = a1µ
n
1 + · · ·+ ak−2µ

n
k−2 + ak−1r

n cos(nθ) + akr
n sin(nθ),

since pi,j is real and so all of the imaginary parts must cancel out.

If some eigenvalues repeat, then the situation is slightly more complicated. If an eigen-
value µk has multiplicity m, we can simply replace ak by a degree m polynomial in
n2.

Example 1.7 (Transition Matrix with Complex Eigenvalues)

Consider the markov chain Xs with states S = {1, 2, 3} as shown in the diagram
below. We want to find the n-step transition probability pi,i(n).

1

2 3

1

1/2
1/2

1/2

1/2

This Markov chain has the transition matrix

P =

 0 1 0
0 1/2 1/2

1/2 0 1/2

 ,

which has distinct eigenvalues {1, i/2,−i/2}.

We can rewrite the complex eigenvalues using trigonometric functions as

i

2
= cos

π

2
+ i sin

π

2
,

− i
2

= cos
π

2
− i sin

π

2
.

The general form for p1,1(n) is then given by

p1n1(n) = A+B ·
(

1

2

)n
cos
(nπ

2

)
+ C ·

(
1

2

)n
sin
(nπ

2

)
.

The boundary conditions can be computed by hand as p1,1(0) = 1, p1,1(1) = 0 and
p1,1(2) = 0. This allows us to solve for A, B and C to get

p1,1(n) =
1

5
+

(
1

2

)n(4

5
cos
(nπ

2

)
− 2

5
sin
(nπ

2

))
.

2This comes from considering the Jordan Normal form of the transition matrix.
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§2 Class Structure

§2.1 Communicating Classes

In Graph Theory, one can often make a problem easier by looking at the connected
components of the graph, effectively splitting it up into smaller disconnected chunks
which are easier to understand on their own. This has a natural analogue in the study
of Markov chains,3 where we consider which states can interact.

Definition 2.1 (Communication)

Let Xn be a Markov chain. For i, j ∈ S, we say that i leads to j, written i→ j, if
pi,j(n) > 0 for some n ≥ 0.

If i→ j and j → i, we say that i and j communicate, and write i↔ j.

We can use this idea of communication to break up our state space by noting that
communication is an equivalence relation.

Theorem 2.2 (Communication is an Equivalence Relation)

The relation ↔ is an equivalence relation on S.

Proof. For any i ∈ S, pi,i(0) = 1 and thus i ↔ i, so the relation is reflexive. The
relation is symmetric by definition, so we are just left to check transitivity.

Let i, j, k ∈ S, and suppose that i↔ j and k ↔ k. Then there exists m,n ≥ 0 such
that pi,j(n) > 0 and pj,k(m) > 0. Then by the Chapman-Kolmogorov equations,

pi,k(m+ n) =
∑
l∈S

pi,l(m)pl,k(n) ≥ pi,j(n)pj,k(m) > 0,

so i→ k. By the same argument k → i, and thus ↔ is transitive.

Because communication is an equivalence relation, it partitions the state space.

Definition 2.3 (Communicating Classes)

The equivalence classes induced by ←→ on S are called communicating classes.

Because communication is really a notion about directed graphs (and not really about
individual probabilities), it’s usually relatively easy to identify the communicating classes
from the diagram of a Markov chain.

For example, the Markov chain below has its communicating classes coloured (and the
transition probabilities are not labelled, as they are not needed to infer the communi-
cating classes, aside from knowing they are non-zero along each edge).

3Indeed, one can view a Markov chain as a labelled directed graph, and then apply the same connected
components argument to obtain the theory shown here.
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1 2

34

In the Markov chain above, we can see that there are a few different ways that commu-
nicating classes can appear.

A communicating class C is closed if there is no way to leave it, in that if i ∈ C and
i → j, then j in C. For example, in the Markov chain above, the communicating class
{1, 2} is closed.

A state i ∈ S is absorbing if there is no way to leave that state, that is, {i} is a
communicating class. In the Markov chain above, 4 is absorbing.

If a Markov chain has only one communicating class, we call is irreducible, as we cannot
split it into smaller parts in this way.

§3 Hitting Times, Stopping Times and Absorption Probabilities

§3.1 Hitting Times

When studying Markov chains, a frequently occurring question is ‘how long does it take
to reach a given state i ∈ S? ’, a concept which we formulate as the hitting time.

Definition 3.1 (Hitting Time)

Let Xn be a Markov chain. The hitting time of some subset of states A ⊆ S is the
random variable TA, which is the least n for which Tn ∈ A. In particular,

TA = inf{n ≥ 0 | Xn ∈ A},

where this may be ∞ if Xn 6∈ A for all n ≥ 0.

In this section, we will also look some related quantities, such as the hitting probability
and mean hitting time.

Definition 3.2 (Hitting Probability)

Let Xn be a Markov chain, and let A ⊆ S be some subset of states. The hitting
probability hAi of A is the probability that Xn eventually reaches a state in A,
given X0 = i. That is,

hAi = P(TA <∞ | X0 = i),

where i ∈ S.

8
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Definition 3.3 (Mean Hitting Time)

Let Xn be a Markov chain, and let A ⊆ S be some subset of states. The mean
hitting time kAi of A is the expected number of steps taken for Xn to reach a state
in A, given X0 = i. That is,

kAi = E[TA | X0 = i],

where i ∈ S. We note that this may be ∞.

So how do we go about calculating these quantities? An intuitive way is to try and
consider what happens as we move from one state to another, as we will see in the
example below.

Example 3.4 (Computing Hitting Probabilities and Mean Hitting Times)

Consider the Markov chain in the diagram below.

1 2 3 4
1
2

1
2

1
2

1
2

Suppose we took A = {4} and wanted to find the hitting probability hA2 = P(TA <
∞ | X0 = 2). One might intuitively suppose that

hA2 = P2,3h
A
3 =

1

2
hA3 ,

hA3 = P3,2 · hA2 + P3,4 · hA4 =
1

2
· hA2 +

1

2
.

which when solved gives us hA2 = 1/3.

Alternative, if we took B = {1, 4} and wanted to find the mean hitting time kB2 , we
could again try the intuitive approach of writing

kB2 = 1 +
1

2
kB3 ,

and noting that kB3 = kB2 by symmetry, giving kB2 = 2.

In the computations above, we really should check that these are valid methods (though
it really is quite intuitive).

Theorem 3.5 (Computing Hitting Probabilities)

Let A ⊆ S. Then the set of hitting probabilities hA = (hAi | i ∈ S) is the minimala

non-negative solution to the equations

hAi =

{
1 if i ∈ A,∑

j∈S Pi,jh
A
j if i 6∈ A.

aMinimal in that if x is another non-negative solution, then xi ≥ hA
i for all i ∈ S.
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Proof. We first check that hi solves this system. Clearly if i ∈ A, then hAi = 1, so
take i ∈ S\A. Then conditioning on the first step in the chain,

hAi =
∑
j∈S

Pi,jP(TA <∞ | X0 = i,X1 = j)

=
∑
j∈S

Pi,jh
A
j ,

by the simple Markov property. So hi does indeed solve this system.

We now check minimality. Let x = (xi | i ∈ S) be another non-negative solution.
For i ∈ A, we have xi = hAi = 1, so that holds. Then for i ∈ S\A, since x satisfies
the system of equations we can write

xi =
∑
j∈S

Pi,jxj =
∑
j∈A

Pi,jxj +
∑
j∈S\A

Pi,jxj . (†)

Then with xj = 1 for j ∈ A and x ≥ 0, we have

xi ≥
∑
j∈A

Pi,j = P(X1 ∈ A | X0 = i) = P(TA < 2 | X0 = i).

Similarily, expanding (†), we have

xi = P(X1 ∈ A | X0 = i) +
∑
j∈S\A

Pi,j

∑
k∈A

Pj,kxk +
∑
k∈S\A

Pj,kxk


≥ P(X1 ∈ A | X0 = i) + P(X1 6∈ A,X2 ∈ A | X0 = i)

= P(TA < 3 | X0 = 1).

We can repeat this argument to eventually establish that xi ≥ P(TA < n | X0 = i),
for all n ≥ 0. Then as n→∞, we have xi ≥ P(TA <∞ | X0 = i), as required.

This method of computing hitting probabilities is perfectly valid on Markov chains with
infinite state spaces.

Example 3.6 (Hitting Probabilities on an Infinite State Space)

Consider the Markov chain with states S = {0, 1, . . . } such that P0,1 = 1, and

Pi,i+1 = p, Pi,i−1 = q for all i ≥ 1,

where p, q ∈ (0, 1) with p+ q = 1.

1 2 3 4 · · ·1 p p · · ·

q q q · · ·

Let hi = P(T0 <∞ | X0 = i), and suppose that p 6= q. Then we clearly have h0 = 1,
and generally we can write down the recurrence

hi = phi+1 + qhi−1.
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This then implies p(hi+1 − hi) = q(hi − hi−1), so that

hi+1 − hi =

(
q

p

)i
(h1 − 1).

This inspires us to write hi as a telescoping sum

hi =

i∑
j=1

(hj − hj−1) + 1

= (h1 − 1)

i∑
j=1

(
q

p

)j
+ 1,

which gives us our general solution hi = a+ b(q/p)i, which we can then solve.

In the case that q > p, then in order for hi to be the minimal solution, we need to
have a = 1 and b = 0, so hi = 1.

We also need to check that our method for calculating the mean hitting time was valid.

Theorem 3.7 (Computing Mean Hitting Times)

Let A ⊆ S. Then the set of mean hitting times kA = (kAi | i ∈ S) is the minimal
non-negative solution to the equations

kAi =

{
0 if i ∈ A,
1 +

∑
j∈S\A Pi,jk

A
j if i 6∈ A.

Proof. We first check that ki solves this system. Clearly if i ∈ A, then kAi = 0, so
take i ∈ S\A. Then conditioning on the first step in the chain,

kAi =
∑
j∈S

Pi,jE[TA | X0 = i,X1 = j]

=
∑
j∈S

Pi,j(1 + E[TA | X0 = j])

= 1 +
∑
j∈S

Pi,jk
A
j ,

which is equivalent to our original sum.

We now show that the solution is minimal. Let y = (xi | i ∈ S) be another non-
negative solution. Then for i ∈ A we have yi = kAi = 0, so consider i ∈ S\A. We
can then write

yi = 1 +
∑
j∈S\A

Pi,jyj

= 1 +
∑
j∈S\A

Pi,j

1 +
∑
k∈S\A

Pj,kyk


≥ P(TA ≥ 1 | X0 = i) + P(TA ≥ 2 | X0 = 1).
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By iterating this, we obtain

yi ≥
n∑

m=1

P(TA ≥ m | X0 = i),

and taking the limit as n→∞, this gives

yi ≥
∞∑
m=1

P(TA ≥ m | X0 = i) = kAi ,

where we note that for a random variable M taking non-negative integer values we
have E[M ] =

∑∞
m=1 P(M ≥ m).

So it does work, how lovely.

§3.2 Stopping Times and the Strong Markov Property

We previously proved the simple Markov property, that conditional on the value of a
Markov chain at a given time m, the future is independent of the past. This property
required that we take some fixed time m – but what if m itself is random? It’s not true
in general4 that the Markov property still holds for an arbitrary random time, but it is
true for certain kinds of times.

Definition 3.8 (Stopping Times)

A random time T : Ω → {0, 1, . . . } ∪ {∞} is a stopping time for a Markov chain
Xn if for all n ≥ 0 the event {T = n} is given in terms of X0, X1, . . . , Xn only.

In particular, random times that ‘look into the future’ are not stopping times. A straight-
forward example of a stopping time is the hitting time TA that we defined in the previous
section.

With stopping times, we can indeed make a statement similar to the Markov property
using random times.

Theorem 3.9 (Strong Markov Property)

Let Xn be a Markov chain with transition matrix P , and let T be a stopping
time. Then conditional on T < ∞ and XT = i, the sequence of random variables
(XT+n)n≥0 is Markov(δi, P ) and is independent of X0, . . . , XT .

Proof. Let H be an event given in terms of X0, . . . , XT−1. Then it suffices to show
that

P(XT+1 = i1, . . . , XT+n = in, H | T <∞, XT = i)

= P(X1 = i1, . . . , Xn = in | X0 = i)P(H | T <∞, XT = i).

The event H ∩ {T = m} is given in terms of X1, X2, . . . , Xm only. Furthermore,

4For example, let T be the first time that a Markov chain hits some value i. Then if we condition on
time T − 1, the future is then determined since the next step will be to i! You will see that this type
of event is not allowed in our definition of stopping times.
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XT = Xm when T = m. We condition on the event H ∩ {T = m} ∩ {Xm = i} and
use the simple Markov property at time m to get

P(XT+1 = i1, . . . , XT+n = in, H | T <∞, XT = i)

= P(X1 = i1, . . . , Xn = in)P(H,T = m,XT = i).

Summing this over m = 0, 1, . . . and dividing by P(T < ∞, XT = i) then gives the
desired result.

§3.3 Recurrence and Transience

We now consider states that a Markov chain continues to come back to, or only visits
finitely many times.

Lemma 3.10 (Probability of Repeated Visiting)

P(Vi > r | X0 = i) = f ri , for all r ∈ N.

Proof. Suppose it is true for r. We need to show that

P(Vi > r + 1 | X0 = i) = P(T
(r+1)
i <∞ | X0 = i) = P(T

(r+1)
i <∞, T (r)

i <∞)

= P(T
(r+1)
i <∞ | T (r)

i <∞, T0 = i) · P(T
(r)
i <∞ | X0 = i)

= P(T
(r+1)
i <∞ | T (r)

i <∞, T0 = i) · f ri .

By the strong Markov property applied to T
(r)
i (which is a stopping time), we get

P(T
(r+1)
i <∞ | X0 = i) = P(Ti <∞ | X0 = i) = fi,

and thus our result holds.

Theorem 3.11 (Recurrence and Transience Criterion)

Let Xn be a markov chain with transition matrix P , and let i ∈ S. Then we have
the following dichotomy:

(1) If P(Ti <∞ | X0 = i) = 1, then i is recurrent and
∑∞

n=0 pi,i(n) is infinite.

(2) If P(Ti <∞ | X0 = i) < 1, then i is transient and
∑∞

n=0 pi,i(n) <∞.

Proof. We can write Vi using indicator functions as Vi =
∑∞

n=0 1[Xn = 1], and then
by linearity of expectation we can write

E[Vi | X0 = i] =
∞∑
n=0

P(Xm = i | X0 = i) =
∞∑
n=0

pi,i(n).

Part (1). If fi = 1, then for all r we have P(Vi > r | X0 = i) = 1, and thus
P(Vi = ∞ | Xi = 0) = 1, implying that i is recurrent, and E[Vi | X0 = i] = ∞,
implying that

∑∞
n=0 pi,i(n) =∞.

13
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Part (2). If fi < 1, then by the previous lemma we have E[Vi | X0 = i] = 1/(1−fi) <
∞, implying that P(Vi <∞ | X0 = i) = 1, so i is transient, and

∑∞
n=0 pi,i(n).

Theorem 3.12 (Recurrence and Transience of Communicating States)

Let x and y be two states that communicate. Then either they are both recurrent
or they are both transient.

Proof. Suppose that x is recurrent. We will show that y is also recurrent. Since
x→ y, there is some m, l ∈ N such that px,y(m) > 0 and py,x(l) > 0. Then we know
that

∑∞
n=0 px,x(n) =∞, and then

∞∑
n=0

py,y(n) ≥
∞∑
n=0

py,y(n+m+ l)

≥
∞∑
n=0

py,x(l)px,x(n)px,y(m)

≥ py,x(l)px,y(m)

∞∑
n=0

px,x(n) =∞.

This immediately can be applied to the entire class structure of a Markov chain.

Corollary 3.13 (Class Structure of Recurrence and Transience)

Either all of the states in a communicating class are recurrent or they are all tran-
sient.

Recurrent communicating classes have a certain flavour to them, which should be intu-
itive. Really, for a communicating class to be recurrent we have to avoid getting stuck
outside of that given communicating class. This forces closure of the communicating
class.

Theorem 3.14 (Closure of Recurrent Communicating Classes)

If C is a recurrent communicating class, then it must be closed.

Proof. Suppose that C was not closed. Then there exists x ∈ C and Y 6∈ C such
that x → y. Let n be such that px,y(n) > 0. If starting from x we hit y at some
point, then we can never visit x again so

P(Vx <∞ | X0 = x) ≥ P(Xm = y | X0 = x) = px,y(m) > 0,

so x is not current which is a contradiction.

Theorem 3.15 (Finite Closed Classes are Recurrent)

A finite closed class is recurrent.

14
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Proof Sketch. Pick any state x in the class. By pigeonhole there’s another recurrent
state y communicating with x. Then there’s positive probability of moving from x
to y and y to x, and this implies that x is also recurrent.

Theorem 3.16

Let P be irreducible and recurrent. Then for all x and Y , P(Ty <∞ | X0 = x) = 1.

Proof. Omitted.

§3.4 Recurrence an Transience for Random Walks in Zn

We now turn our attention to simple random walks in low and high dimensions, and in
particular at an interesting result due to Pólya which informally says

A drunk man will find his way home, but a drunk bird may get lost forever.

Theorem 3.17 (Pólya)

A simple random walk in Zd is recurrent for d = 1 and d = 2 and transient for d ≥ 3.

Let’s first consider the case of a random walk on Z.

Proof (a simple random walk on Z is recurrent). Test
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