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This article constitutes my notes for the ‘Methods’ course, held in Michaelmas 2021 at
Cambridge. These notes are not a transcription of the lectures, and differ significantly
in quite a few areas. Still, all lectured material should be covered.
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§1 Fourier Series

§1.1 Periodic Functions

We will begin our study of method and in particular Fourier series by considering some
periodic functions.

Definition 1.1 (Perioidic)

A function f(x) is periodic if f(x+ T ) = f(x) for all x, where T is the period.

Example 1.2 (Simple Harmonic Motion)

Many physical objects are described by simple harmonic motion, with the position
given by

y = A sinωt.

We call A the amplitude, and the period is T = 2π/ω. The frequency is 1/T .

Fourier series is all about trying to write periodic functions as particular sums of sines
and cosines. Consider the set of functions

gn(x) = cos
nπx

L
, and hn(x) = sin

nπx

L
,

1



Adam Kelly (October 18, 2021) Methods

where we take n ∈ R+. These functions are periodic on the interval [0, 2L].

You may recall the following set of identities:

cosA cosB =
1

2
(cos(A−B) + cos(A+B))

sinA sinB =
1

2
(cos(A−B)− cos(A+B))

sinA cosB =
1

2
(sin(A−B) + sin(A+B)) .

We are going to try and define an inner product on this domain [0, 2L], and using
that we will by able to multiply these functions together and talk about their relative
orthogonality.

Definition 1.3

We define the inner product 〈f, g〉 =
∫ 2L
0 f(x)g(x) dx.

We can then obtain some orthogonality conditions for hn and gn with respect to this
inner product. We can compute for n 6= m

〈hn, hm〉 =

∫ 2L

0
sin

nπx

L
sin

mπx

L
dx

=
1

2

∫ 2L

0

(
cos

(n−m)π

L
x− cos

(n+m)π

L
x

)
dx

=
1

2

L

π

[
sin(n−m)πx/L

n−m
− sin(n+m)πx/L

n−m

]2L
0

= 0,

and for n = m

〈hn, hn〉 =

∫ 2L

0
sin2 nπx

L
dx

=

∫ 2L

0

1

2

(
1− cos

2πnx

L

)
dx

= L.

Hence we obtain the orthogonality condition

〈hn, hm〉 =

{
Lδmn if n,m 6= 0,

0 if m = 0.

Similarly, it’s straightforward to check that

〈gn, gm〉 =

{
Lδmn if n,m 6= 0,

2Lδ0n if m = 0.

and
〈hn, gm〉 = 0.

These orthogonality conditions are important because we are going to use these functions
as a complete orthogonal set which spans the space of ‘well-behaved periodic functions’.
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§1.2 Definition of a Fourier Series

We can express any ‘well-behaved’ periodic function f(x) with period 2L as

f(x) =
1

2
a0 +

∞∑
n=1

an cos
nπx

L
+
∞∑
n=1

bn sin
nπx

L
,

where an, bn are constants such that the RHS is convergent for all x where f is continuous.
At a discontinuity, the Fourier series approaches the midpoint of the upper and lower
limits at that point.

Consider taking the inner product 〈hn, f〉 and substitute the expression for f above, to
get ∫ 2L

0
sin

mπx

L
f(x) dx =

∞∑
n=1

Lbnδnm = Lbm.

Hence we find that (doing something similar with gn)

bn =
1

L

∫ 2L

0
f(x) sin

nπx

L
dx,

and an =
1

L

∫ 2L

0
f(x) cos

nπx

L
dx.

Now, this expression for an includes the case n = 0, and says that it is the average value
of the function. Also, the range of integration is one period, and we can equivalently
integrate over [−L,L] instead of [0, 2L].

Example 1.4 (The Sawtooth Wave)

Consider the function f(x) = x for −L ≤ x ≤ L, with the function being periodic
elsewhere.

◦

•

◦

•

L−L

Here we have

an =
1

L

∫ L

−L
x cos

nπx

2
dx = 0, (integrating an odd function)

for all n, and

bn =
2

L

∫ L

0
x sin

nπx

L
dx

=
−2

nπ

[
x cos

nπx

L

]L
0

+
2

nπ

∫ h

0
cos

nπx

L
dx

= −2L

nπ
cosnπ +

2L

(nπ)2
����sinnπ
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=
2L

nπ
(−1)n+1.

So the sawtooth Fourier series is

2L

∞∑
n=1

(−1)n+1

nπ
sin
(nπx
L

)
=

2L

π

[
sin
(πx
L

)
− 1

2
sin

(
2πx

L

)
+

1

3
sin

(
3πx

L

)
+ · · ·

]
.

which is slowly convergent.

◦

•

◦

•

L−L

§1.3 The Dirichlet Conditions (Fourier’s Theorem)

So we need ‘well behaved’ functions for what we have discussed about Fourier series
to work, and for a Fourier series for f to be unique. But what exactly does it mean
for a function to be ‘well behaved’ in this context? This is specified by the Dirichlet
conditions, also known as Fourier’s theorem.

Theorem 1.5 (The Dirichlet Conditions)

If f is a bounded periodic function with period 2L and finitely many minima, maxima
and discontinuities on 0 ≤ x ≤ 2L, then the Fourier series converges to f(x) at all
points where f is continuous, and at discontinuities converges to 1

2(f(x+) + f(x−)).

One might note that these conditions are much weaker than those needed for Taylor
series, but it does eliminate pathological functions such as sin 1/x, 1/x and the indicator
function on the rationals. The converse of this is not true, for example sin 1/x has a well
defined Fourier series.

The proof of this result is too difficult, but is best done using complex methods so we
will not dwell on it in this course.

The rate of convergence of the Fourier series depends on the ‘smoothness’ of the function.

Theorem 1.6 (Rate of Convergence of Fourier Series)

If f(x) has continuous derivatives up to a pth derivative which is discontinuous, then
the Fourier series converges as O(n−(p+1)) as n→∞.

Example 1.7 (Square Wave)

Consider the function

f(x)

{
1 if 0 ≤ x < 1,

−1 if − 1 ≤ x < 0.
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This function has discontinuous p = 0th derivative (the function is discontinuous!),
and the fourier series of this function is given by

f(x) = 4
∞∑
m=1

sin(2m− 1)πx

(2m− 1)π
.

Example 1.8 (‘See-Saw’ Wave)

Consider the function

f(x)


x(1− ξ) if 0 ≤ x < ξ,

ξ(1− x) if ξ ≤ x < 1,

f(−x) if − 1 ≤ x < 0.

This function has discontinuous p = 1st derivative, and it’s Fourier series is given
by

f(x) = 2

∞∑
m=1

sin(nπξ) sin(nπx)

(nπ)2
.

Integration of Fourier Series

As a general principle, it is always valid to integrate the Fourier series of f(x) term-wise
to obtain

F (x) =

∫ x

−x
f(x) dx,

because F (x) satisfies the Dirichlet conditions if f(x) does.

Differentiation of Fourier Series

As a general principle, you must take care when differentiating a Fourier series term-wise.
Let’s look at an example.

Example 1.9 (Differentiating the Square Wave)

Consider the clearly non-differentiable square wave function, defined in Example 1.7.
We had

f(x) = 4
∞∑
m=1

sin(2m− 1)πx

(2m− 1)π
.

We can try and differentiate this term-wise to get

f ′(x)
?
= 4

∞∑
m=1

cos(2m− 1)πx,

but this series is unbounded!

So we need to be careful. Here’s the result about what we can do with differentiation.
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Theorem 1.10

If f(x) is continuous and satisfies the Dirichlet conditions, and f ′(x) satisfies the
Dirichlet conditions, then f ′(x) can be found by term-wise differentiation of the
Fourier series of f(x).

§1.4 Parseval’s Theorem

Parseval’s theorem is a relation between the integral of the square of a function and the
square of the Fourier coefficients:

∫ 2L

0
[f(x)]2 dx =

∫ 2L

0
dx

[
1

2
a0 +

∑
n

ak cos
nπx

L
+
∑
n

bn sin
nπx

L

]2

=

∫ 2L

0
dx

[
1

4
a20 +

∑
n

a2n cos2
nπx

L
+
∑
n

b2n sin2 nπx

L

]

= 2

[
1

2
a20 +

∞∑
n=1

(
a2n + b2n

)]
.

This result is also called the completeness relation, since the LHS ≥ RHS if any of the
basis functions are missing.

Example 1.11 (The Basel Problem)

Consider the sawtooth wave f(x) = x on −L ≤ x ≤ L. The the LHS is∫ L

−L
x2 dx =

2

3
L3,

and the RHS is

L
∞∑
n=1

4L2

n2π2
=

4L3

π2

∞∑
n=1

1

n2
,

and thus
∑∞

n=1 1/n2 = π2/6.

§1.5 Alternative Fourier Series

There are some alternative forms of fourier series.

Half-Range Series

Consider f(x) defined only on 0 ≤ x < L. We can extend it’s range over −L ≤ x < L in
two simple ways:

1. Require f to be odd, with f(−x) = −f(x). Then considering it’s Fourier series we
would have an = 0 for all n (as cos is even), and

bn =
2

L

∫ L

0
f(x) sin

nπx

2
dx.
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This implies that f(x) =
∑∞

n=1 bn sin nπx
L , which is a Fourier sine series.

2. Require f to be even, with f(−x) = f(x), Then bn = 0, and

an =
2

L

∫ 2

0
f(x) cos

nπx

L
dx,

so f(x) = 1
2a0 +

∑∞
n=1 an cos nπxL , which is a Fourier cosine series.

Complex Representation

Recall that we can write

cos
nπx

L
=

1

2

(
einπx/L + e−inπx/L

)
and sin

nπx

L
=

1

2i

(
einπx/L − e−inπx/L

)
.

So the Fourier series is

f(x) =
1

2
a0 +

∞∑
n=1

an cos
nπx

L
+
∞∑
n=1

bn sin
nπx

2

=
1

2
a0 +

∞∑
n=1

(an − ibn) einπx/L +

∞∑
n=1

(an + ibn) e−inπx/L

=
∞∑

m=−∞
cme

imπx/L,

where for m > 0, cm = 1
2(am − ibm) and for m < 0, cm = 1

2(a−m + ib−m). Equivalently,

cm =
1

2L

∫ L

−L
f(x)e−imπx/L dx.

§1.6 Some Fourier Series Motivations – Self-Adjoint Matrices

We will now review a few results about matrices. Suppose that u,v ∈ Cn with inner
product 〈u,v〉 = u†v. The n× n matrix A is self-adjoint or hermitian if

〈Au, v〉 = 〈u,Av〉,

that is, if A† = A.

The eigenvalues λi and eigenvectors vi satisfy

Avi = λivi,

and have the following properties

(i) The eigenvalues are real

(ii) If λi 6= λj , then the corresponding eigenvectors are orthogonal with 〈vi,vj〉 = 0

(iii) We can rescale to create an orthonormal basis {v1, . . . ,vn}.

Given b, we can solve for x in the equation

Ax = b.
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Express b =
∑n

i=1 bivi, and we seek a solution x =
∑n

i=1 cnvn. Substituting this into
the above equation, we get

Ax =
∑
i

Acivi =
∑
i

ciλivi =
∑
i

bivi.

By orthogonality, we can equate coefficients to get cnλn = bn, so our solution is

x =
n∑
i=1

bi
λi

vi.

So once we have a self-adjoint matrix A and have found all of the eigenvalues, we then
have a general methodology for solving any matrix equation of the form Ax = b. It
turns out that you can do the same with Fourier series!

We can find a general solution to the differential equation for which cosines and sines
are the eigenfunctions.

§1.7 Solving Inhomogeneous ODEs with Fourier Series

We wish to find y(x) given f(x) for the differential operator

L[y] ≡ − d2y

dx2
= f(x).

To solve this, we need some boundary conditions, which we will take as y(0) = y(L) = 0.

The related eigenvalue problem is

L[yn] = λnyn,

with yn(0) = yn(L) = 0, which has eigenfunctions and eigenvalues

yn(x) = sin
nπx

L
, λn =

(nπ
L

)2
.

We seek solutions as half-range sine series. To do that, we will try substitute y(x) =∑∞
n=1 cn sin nπx

L , and expand f(x) in terms of it’s fourier series, f(x) =
∑∞

n=1 bn sin nπx
L ,

with bn = 2
L

∫ L
0 f(x) sin nπx

L dx.

Substituting this into the differential equation, we get

L[y] = − d2

dx2

( ∞∑
n=1

cn sin
nπx

L

)
=
∞∑
n=1

cn

(nπ
L

)2
sin

nπx

L
.

By orthogonality, we have cn
(
nπ
L

)2
= bn, so the solution is

y(x) =
∞∑
n=1

bn(
nπ
L

)2 sin
nπx

L
=
∞∑
n=1

bn
λn
yn.
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Example 1.12

Consider the ‘square wave’ source given by f(x) = 1 for 0 ≤ x < 1, with the function
being odd. This function has fourier series

f(x) = 4

∞∑
m=1

sin(2m− 1)πx

(2m− 1)π
.

So the solution for y must then by

y(x) =
∑
n

bn
λn
yn = 4

∑
m

sin(2m− 1)πx

((2m− 1)π)3
,

but this is the Fourier series for y(x) = 1
2x(1− x)!
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