Inversion*

Olympiad Training Notes
Adam Kelly (ak2316@cam.ac.uk)
August 14, 2020

Rules of the Game

Let ω be a circle with center O and radius r. An inversion about ω is a transformation satisfying the following.

- The center O of the circle is sent to P_{∞}.
- The point P_{∞} is sent to O.
- Any other point A is sent to the point A^{*} on the ray $O A$ such that $O A \cdot O A^{*}=r^{2}$.

A Geometric Interpretation

First notice that inversion swaps points. Then we can use the following construction find the inverse of points with respect to ω.

Proof Sketch. Check $O A \cdot O A^{*}=r^{2}$.

Inverting Pairs of Points

Consider points A and B and circle ω.

Inverting about ω, notice that $O A \cdot O A^{*}=O B \cdot O B^{*}=r^{2}$ implies $A A^{*} B B^{*}$ are concyclic by power of a point. Notably that gives us the angle condition $\measuredangle O A B=-\measuredangle O B^{*} A^{*}$.

[^0]
Inverting Circles and Lines

In an inversion about a circle with center O,

- A line through O inverts to itself.
- A circle through O inverts to a line not through O, and vice versa. The diameter of this circle containing O is perpendicular to the line.
- A circle not through O inverts to another circle not through O. The centers of these circles are collinear with O

Proof Sketch. Angle chase using the angle condition we obtained in the 'Inverting Pairs of Points' section.

Inversion and Distance

Let A and B be points other than O and consider an inversion about O with radius r. Then

$$
A^{*} B^{*}=\frac{r^{2}}{O A \cdot O B} \cdot A B, \quad \text { and } \quad A B=\frac{r^{2}}{O A^{*} \cdot O B^{*}} \cdot A^{*} B^{*}
$$

Proof Sketch. Use similar triangles, and the second formula follows directly.

Inverting Orthogonal Circles

In the diagram below, we call the circles ω_{1} and ω_{2} orthogonal. Inverting about ω_{1}, ω_{2} inverts to itself (and vice versa).

Proof Sketch. Use power of a point with respect to ω_{2}.

Forcing a Swap $-\sqrt{b c}$ Inversion

Inversion about a circle at A with radius $\sqrt{A B \cdot A C}$, followed by a reflection across the bisector of $\angle B A C$ swaps B and C.

Proof Sketch. Computation.

[^0]: *Based on chapter 8 of Evan Chen's 'Euclidean Geometry in Mathematical Olympiads'

