IRMO INEQUALITIES

ADAM KELLY, SEPTEMBER 20, 2020

1 Useful Inequalities

The following is a list of inequalities that are sufficient to solve every problem in the 'EGMO Problems' section of this handout. They are in a general order of usefulness.

Theorem (AM-GM Inequality). For a collection of n non-negative real numbers a_{1}, a_{2}, \ldots, a_{n}, we have

$$
\frac{a_{1}+a_{2}+\cdots+a_{n}}{n} \geq \sqrt[n]{a_{1} a_{2} \cdots a_{n}}
$$

with equality if and only if $a_{1}=a_{2}=\cdots=a_{n}$. 1

Theorem (RMS-AM-GM-HM Inequality). For n non-negative real numbers a_{1}, a_{2}, \ldots, a_{n}, the following holds.

$$
\sqrt{\frac{a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}}{n}} \geq \frac{a_{1}+a_{2}+\cdots+a_{n}}{n} \geq \sqrt[n]{a_{1} a_{2} \cdots a_{n}} \geq \frac{n}{\frac{1}{a_{1}}+\frac{1}{a_{2}}+\cdots+\frac{1}{a_{n}}}
$$

with equality if and only if $a_{1}=a_{2}=\cdots=a_{n}$. 2
Theorem (Cauchy-Schwarz Inequality). For the sequences of real numbers a_{1}, a_{2}, \ldots, a_{n} and $b_{1}, b_{2}, \ldots, b_{n}$, we have
${ }^{1} A M$ is the
arithmetic mean, and GM is the
geometric mean.
${ }^{2}$ RMS is the root mean squared, and HM is the
harmonic mean.

$$
\left(a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n}\right)^{2} \leq\left(a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}\right) \cdot\left(b_{1}^{2}+b_{2}^{2}+\cdots+b_{n}^{2}\right)
$$

with equality if and only if $\frac{a_{i}}{b_{i}}$ is a constant for all $1 \leq i \leq n$.
Theorem (Holder's Inequality). For sequences $a_{i}, b_{i}, \ldots, z_{i}$, and $\lambda_{a}+\lambda_{b}+\cdots+\lambda_{z}=1$, we have

$$
a_{1}^{\lambda_{a}} b_{1}^{\lambda_{b}} \cdots z_{1}^{\lambda_{z}}+\cdots+a_{n}^{\lambda_{a}} b_{n}^{\lambda_{b}} \cdots z_{n}^{\lambda_{z}} \leq\left(a_{1}+a_{2}+\cdots+a_{n}\right)^{\lambda_{a}} \cdots\left(z_{1}+z_{2}+\cdots+z_{n}\right)^{\lambda_{n}} .
$$

Theorem (Triangle Inequalty). a, b, and c are the sidelengths of a triangle if and only if all of the following holds.

$$
b+c>a, \quad a+c>b, \text { and } \quad a+b>c
$$

Theorem (Rearrangement Inequality). For two sequences $a_{1} \geq a_{2} \geq \cdots \geq a_{n}$ and $b_{1} \geq b_{2} \geq \cdots \geq b_{n}$ then
$a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n} \geq a_{1} b_{\pi(1)}+a_{2} b_{\pi(2)}+\cdots+a_{n} b_{\pi(n)} \geq a_{1} b_{n}+a_{2} b_{n-1}+\cdots+a_{n} b_{1}$,
where $\pi(1), \pi(2), \ldots, \pi(n)$ is any permutation of $1,2, \ldots, n$.

EGMO Problems

Problem 1 (EGMO TST 2020). Let $a, b, c \geq 0$ be real numbers with $a+b+$ $c=1$ Show that:

$$
1 \leq \sqrt{a(1+b)}+\sqrt{b(1+c)}+\sqrt{c(1+a)} \leq 2
$$

Hint: For the LHS, note that $\sqrt{a(1+b)} \geq \sqrt{a^{2}}$. For the RHS, try using the condition given along Cauchy-Schwarz.

Solution: We show the RHS first. Using the condition $a+b+c=1$,

$$
\begin{array}{r}
\sum_{c y c} \sqrt{a(1+b)} \leq 2 \\
\Leftrightarrow \sum_{c y c} \sqrt{a} \sqrt{a+b+c+b} \leq 2
\end{array}
$$

By Cauchy-Schwarz,

$$
\begin{aligned}
\sum_{c y c} \sqrt{a} \sqrt{a+b+c+b} & \leq \sqrt{a+b+c} \sqrt{(a+b+c+b)+(a+b+c+c)+(a+b+c+a)} \\
& =\sqrt{a+b+c} \sqrt{4 a+4 b+4 c} \\
& =2
\end{aligned}
$$

as required. For the LHS, we note that $\sqrt{a(1+b)} \geq \sqrt{a^{2}}$, as $1+b \geq a$, thus

$$
\sum_{c y c} \sqrt{a(1+b)} \geq a+b+c=1,
$$

completing the proof.

Problem 2 (EGMO TST 2019). Let a, b, c be the sides of a triangle. Prove
that

$$
\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}<2
$$

Hint: Use the triangle inequality, $b+c \geq a$ to derive $\frac{a}{2(b+c)}<\frac{a}{a+b+c}$, and sum.
Solution: As a, b, c are the sides of a triangle, $b+c>a$ and vice versa. Thus

$$
\frac{a}{b+c}<\frac{2 a}{a+b+c} .
$$

Cycling the variables and summing yields

$$
\begin{aligned}
\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b} & <\frac{2 a}{a+b+c}+\frac{2 b}{a+b+c}+\frac{2 b}{a+b+c} \\
& =2\left(\frac{a+b+c}{a+b+c}\right) \\
& =2
\end{aligned}
$$

as required.

Problem 3 (EGMO TST 2019). Let $0<x, y, z<1$. Show that:

$$
\frac{1}{x(1-y)}+\frac{1}{y(1-z)}+\frac{1}{z(1-x)} \geq 12
$$

Hint: Using AM-GM will allow you to regroup terms, resulting with $\frac{1}{x(1-x)}$. Another application of AM-GM then gives the required result.

Solution: By AM-GM,

$$
\begin{aligned}
\sum_{c y c} \frac{1}{x(1-y)} & \geq 3 \cdot\left(\frac{1}{x} \frac{1}{(1-y)} \frac{1}{y} \frac{1}{(1-z)} \frac{1}{z} \frac{1}{(1-x)}\right)^{\frac{1}{3}} \\
& =3\left(\frac{1}{x(1-x)}\right)^{\frac{1}{3}}\left(\frac{1}{y(1-y)}\right)^{\frac{1}{3}}\left(\frac{1}{z(1-z)}\right)^{\frac{1}{3}}
\end{aligned}
$$

Considering each term of the product and again applying AM-GM,

$$
\begin{aligned}
\sqrt{x(1-x)} & \leq \frac{x+1-x}{2}=\frac{1}{2} \\
\Rightarrow x(1-x) & \leq \frac{1}{4} \\
\Rightarrow \frac{1}{x(1-x)} & \geq 4
\end{aligned}
$$

Finally,

$$
\begin{aligned}
\sum_{c y c} \frac{1}{x(1-y)} & \geq 3 \cdot 4^{\frac{1}{3}} \cdot 4^{\frac{1}{3}} \cdot 4^{\frac{1}{3}} \\
& =12 .
\end{aligned}
$$

Problem 4 (EGMO TST 2018).

1. Prove that for any positive real numbers x, y we have $x^{3}+y^{3} \geq x^{2} y+x y^{2}$
2. Prove that for any real numbers $0 \leq x, y, z \leq 1$ we have

$$
3+x^{3}+y^{3}+z^{3} \geq x^{2}+y^{2}+z^{2}+x+y+z
$$

Hint: For (a), either AM-GM or rearrangement will suffice. For (b), note that it is true if $1+x^{3} \geq x^{2}+x$.

Solution:

1. This is a well known inequality with a number of standard proofs.

Using the rearrangement inequality, assume WLOG that $x \geq y$. Then,

$$
x \cdot x \cdot x+y \cdot y \cdot y \geq x \cdot x \cdot y+y \cdot y \cdot x
$$

as required.
Alternatively, using AM-GM,

$$
2 x^{3}+y^{3} \geq 3\left(x^{3} x^{3} y^{3}\right)^{\frac{1}{3}}=3 x^{2} y
$$

Similarly, $2 y^{3}+x^{3} \geq 3 y^{2} x$. Adding, we get

$$
\begin{aligned}
3 x^{3}+3 y^{3} & \geq 3 x^{2} y+3 y^{2} x \\
\Longrightarrow x^{3}+y^{3} & \geq x^{2} y+x y^{2}
\end{aligned}
$$

2. Begin by noticing this is true if $1+x^{3} \geq x^{2}+x$.

$$
\begin{aligned}
1+x^{3} & \geq x^{2}+x \\
\Leftrightarrow x^{3}-x^{2}-x+1 & \geq 0 \\
\Leftrightarrow(x-1)(x+1)(x-1) & \geq 0
\end{aligned}
$$

which is true, finishing the proof.

Problem 5 (EGMO TST 2017). Triangle $A B C$ has area S. Denote by M, N and P the midpoints of $B C, C A$ and $A B$ respectively. Prove that

$$
2 S\left(\frac{1}{A B}+\frac{1}{B C}+\frac{1}{C A}\right) \leq A M+B N+C P<\frac{3}{2}(A B+B C+C A)
$$

Hint: Drawing a picture will help a lot. Looking at the distances will allow you to solve both the LHS and RHS seperately.

Solution: Consider the following diagram.

We begin by rewriting the LHS of the inequality. Let h_{c} denote the length of the perpendicular from a point C to the opposite side. Then,

$$
\begin{aligned}
2 S\left(\frac{1}{A B}+\frac{1}{B C}+\frac{1}{C A}\right) & =\left(\frac{2 S}{A B}+\frac{2 S}{B C}+\frac{2 S}{C A}\right) \\
& =h_{c}+h_{a}+h_{b}
\end{aligned}
$$

The shortest distance between a line and a point is the perpendicular distance, thus $h_{c} \leq C P$ and so on, thus

$$
h_{c}+h_{a}+h_{b} \leq A M+B M+C P
$$

so the LHS is true.
For the RHS, we note that it is sufficient to prove that $A M<(A B+B C+C A) / 2$. With this in mind, using the same principle as before (shortest distance to a line is
perpendicular), we get

$$
\begin{aligned}
& A M \leq A C, \quad A M \leq A B \\
& \Longrightarrow 2 A M \leq A C+A B \\
& \Longrightarrow 2 A M<A C+A B+B C \\
& \Longrightarrow A M<\frac{A C+A B+B C}{2}
\end{aligned}
$$

This can be repeated for $B N$ and $C P$, and summing the results yeilds the RHS, finishing the proof.

Problem 6 (EGMO TST 2017). The positive real numbers a, b, c satisfy the double inequality

$$
\frac{b^{2}}{a+b}+\frac{c^{2}}{b+c}+\frac{a^{2}}{c+a} \geq \frac{c^{2}}{a+b}+\frac{a^{2}}{b+c}+\frac{b^{2}}{c+a} \geq \frac{a^{2}}{a+b}+\frac{b^{2}}{b+c}+\frac{c^{2}}{c+a}
$$

Prove that $a=b=c$

Hint: It can be shown that the LHS is equal the RHS, thus comparing the LHS and the middle allows you to get terms of the form $\sum\left(a^{2}-b^{2}\right)^{2} \geq 0$, which will finish off the problem.

Solution: This is a not-so-fun bashy problem, but we shall proceed regardless. We begin by showing the RHS and LHS are equal.

$$
\begin{aligned}
& \left(\frac{b^{2}}{a+b}+\frac{c^{2}}{b+c}+\frac{a^{2}}{c+a}\right)-\left(\frac{a^{2}}{a+b}+\frac{b^{2}}{b+c}+\frac{c^{2}}{c+a}\right) \\
& =\left(\frac{b^{2}-a^{2}}{a+b}\right)+\left(\frac{c^{2}-b^{2}}{b+c}\right)+\left(\frac{a^{2}-c^{2}}{c+a}\right) \\
& =b^{2}-a^{2}+c^{2}-b^{2}+a^{2}-c^{2} \\
& =0
\end{aligned}
$$

Thus, the LHS is equal to the middle. Similar to before,

$$
\begin{aligned}
\left(\frac{b^{2}-c^{2}}{a+b}\right)+\left(\frac{c^{2}-a^{2}}{b+c}\right)+\left(\frac{a^{2}-b^{2}}{c+a}\right) & =0 \\
\Longrightarrow \frac{(b+c)(b-c))}{a+b}+\frac{(c+a)(c-a)}{b+c}+\frac{(a-b)(a+b)}{c+a} & =0 \\
\Longrightarrow(a+b)(b+c)^{2}(b-c)+(a+b)(c-a)(c+a)^{2}+(a+b)^{2}(a-b)(b+c) & =0 \\
\Longrightarrow a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}-a^{4}-b^{4}-c^{4} & =0 \\
\Longrightarrow\left(a^{2}-b^{2}\right)^{2}+\left(b^{2}-c^{2}\right)^{2}+\left(c^{2}-a^{2}\right)^{2} & =0
\end{aligned}
$$

therefore $a=b, b=c$ and $a=c$.

Problem 7 (EGMO TST 2015). Let x, y, z, w be positive real numbers, and suppose that $x y z w=16$. Show that

$$
\frac{x^{2}}{x+y}+\frac{y^{2}}{y+z}+\frac{z^{2}}{z+w}+\frac{w^{2}}{w+x} \geq 4
$$

with equality only when $x=y=z=w=2$

Hint: Use Cauchy Schwarz to combine the denominators, followed by AM-GM to turn the sums into products, allowing you to use the $x y z w=16$ condition.

Solution: Applying Cauchy-Schwarz,

$$
\begin{aligned}
& \sqrt{\sum_{c y c}\left(\frac{x}{\sqrt{x+y}}\right)^{2}} \cdot \sqrt{\sum_{c y c}(\sqrt{x+y})^{2}} \geq x+y+z+w \\
& \Leftrightarrow \sqrt{\sum_{c y c} \frac{x^{2}}{x+y}} \cdot \sqrt{2(x+y+z+w)} \geq x+y+z+w \\
& \Leftrightarrow \sum_{c y c} \frac{x^{2}}{x+y} \geq \frac{x+y+z+w}{2}
\end{aligned}
$$

Applying AM-GM, we have

$$
\begin{aligned}
x+y+z+w & \geq 4(x y z w)^{\frac{1}{4}} \\
& =4(16)^{\frac{1}{4}} \\
& =8,
\end{aligned}
$$

allowing us to finish the inequality,

$$
\sum_{c y c} \frac{x^{2}}{x+y} \geq \frac{8}{\sqrt{2}}=4 .
$$

To finish the proof, we note that for equality to occur, the use of AM-GM and CauchySchwarz implies that $x=y=z=w$. Then, the condition that $x y z w=16$ forces a unique equality, when all variables are 2 . Checking, we find that this is correct.

Problem 8 (EGMO TST 2014). Prove that if a and b are positive real numbers,

$$
\sqrt[3]{\frac{a}{b}}+\sqrt[3]{\frac{b}{a}} \leq \sqrt[3]{2(a+b)\left(\frac{1}{a}+\frac{1}{b}\right)}
$$

Hint: This is a perfect use case for Holder's inequality, a generalization of CauchySchwarz!

Solution: Using Holder's inequality, we have

$$
\begin{aligned}
1^{\frac{1}{3}} \cdot a^{\frac{1}{3}} \cdot\left(\frac{1}{b}\right)^{\frac{1}{3}} & +1^{\frac{1}{3}} \cdot b^{\frac{1}{3}} \cdot\left(\frac{1}{a}\right)^{\frac{1}{3}} \leq(1+1)^{\frac{1}{3}}(a+b)^{\frac{1}{3}}\left(\frac{1}{a}+\frac{1}{b}\right) \\
& \Leftrightarrow \sqrt[3]{\frac{a}{b}}+\sqrt[3]{\frac{b}{a}} \leq \sqrt[3]{2(a+b)\left(\frac{1}{a}+\frac{1}{b}\right)}
\end{aligned}
$$

Problem 9 (EGMO TST 2013). Let x, y be positive integers with $3 x+4 y+$ $x y=2012$

1. Prove that $x+y \geq 83$.
2. Prove also that the same inequality is valid if 2012 is replaced by 2013.

Hint: This looks like an inequality, but the positive integer condition makes it look a little like a number theory problem. Solving like a diophantine equation can help here.

Solution:

1. We begin by factoring the given condition, ${ }^{3}$

$$
\begin{aligned}
3 x+4 y+x y & =2012 \\
\Longrightarrow(x+4)(y+3)-12 & =2012 \\
\Longrightarrow(x+4)(y+3) & =2024
\end{aligned}
$$

So if $a b=2024$ are two factors of 2024 , then

$$
x+4=a, \quad y+3=b \quad \Longrightarrow \quad x+y=a+b-7
$$

thus it is sufficient to show there is no factor pairs with a sum less than $90.2024=$ $2^{3} \times 11 \times 23$, and using rearrangement we find that $23 \cdot 2+11 \cdot 2 \cdot 2=90$ is minium, so this is true.
2. Replacing 2012 with 2013 , we again find that it's sufficient to show there is no factor pairs with a sum of less than 90 . Factoring, $2013=3 \times 11 \times 61$, thus the minimum sum is $61+11 \cdot 3=94$, so this is also true.

Problem 10 (EGMO TST 2012). Prove that for all positive real numbers x and y satisfying $x+y=1$ the following inequality holds

$$
\left(x+\frac{1}{x}\right)^{2}+\left(y+\frac{1}{y}\right)^{2} \geq \frac{25}{2}
$$

Hint: The squares are vaguelly reminiscent of $R M S$, and the $1 / x$ and $1 / y$ terms are reminiscent of HM, so such inequalities may be helpful.

Solution: With the intention of applying AM-RMS, we rewrite the inequality as the equivalent

$$
\sqrt{\frac{\left(x+\frac{1}{x}\right)^{2}+\left(y+\frac{1}{y}\right)^{2}}{2}} \geq \frac{5}{2}
$$

Then, by AM-RMS,

$$
\sqrt{\frac{\left(x+\frac{1}{x}\right)^{2}+\left(y+\frac{1}{y}\right)^{2}}{2}} \geq \frac{x+y+\frac{1}{x}+\frac{1}{y}}{2}=\frac{1+\frac{1}{x}+\frac{1}{y}}{2}
$$

thus we must prove $\frac{1}{x}+\frac{1}{y} \geq 4$. This is straightforward using AM-HM,

$$
\begin{aligned}
& \frac{2}{\frac{1}{x}+\frac{1}{y}} \leq \frac{x+y}{2}=\frac{1}{2} \\
\Leftrightarrow & \frac{1}{\frac{1}{x}+\frac{1}{y}} \leq \frac{1}{4} \\
\Leftrightarrow & \frac{1}{x}+\frac{1}{y} \geq 4,
\end{aligned}
$$

finishing the proof.

Past Problems

This is a collection of all inequality problems that have appeared in the Irish Mathematical Olympiad. The questions are ordered chronologically. All problems are due to their respective creators.

Problem 1 (IrMO 2019). Supose x, y, z are real mumbers such that $x^{2}+y^{2}+z^{2}+$ $2 x y z=1$. Prove that $8 x y z \leq 1$ with equality if and only if (x, y, z) is one of the following:

$$
\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right), \quad\left(-\frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right), \quad\left(-\frac{1}{2}, \frac{1}{2},-\frac{1}{2}\right), \quad\left(\frac{1}{2},-\frac{1}{2},-\frac{1}{2}\right)
$$

Problem 2 (IrMO 2018). Let a, b, c be the side lengths of a triangle. Prove that

$$
2\left(a^{3}+b^{3}+c^{3}\right)<(a+b+c)\left(a^{2}+b^{2}+c^{2}\right) \leq 3\left(a^{3}+b^{3}+c^{3}\right)
$$

Problem 3 (IrMO 2017). Show that for all non-negative numbers a, b

$$
1+a^{2017}+b^{2017} \geq a^{10} b^{7}+a^{7} b^{2000}+a^{2000} b^{10}
$$

When is equality attained?
Problem 4 ($\operatorname{IrMO} 2016$). Let $a_{1}, a_{2}, \ldots, a_{m}$ be positive integers, none of which is equal to 10 , such that $a_{1}+a_{2}+\cdots+a_{m}=10 m$. Prove that

$$
\left(a_{1} a_{2} a_{3} \cdots a_{m}\right)^{1 / m} \leq 3 \sqrt{11}
$$

Problem 5 (IrMO 2015). Suppose x, y are nonnegative real numbers such that $x+y \leq$ 1. Prove that

$$
8 x y \leq 5 x(1-x)+5 y(1-y)
$$

eand determine the cases of equality.
Problem 6 (IrMO 2015). Prove that, for all pairs of nonnegative integers, j, n

$$
\sum_{k=0}^{n} k^{j}\binom{n}{k} \geq 2^{n-j} n^{j}
$$

Problem 7 (IrMO 2014). Suppose $a_{1}, \ldots, a_{n}>0$, where $n>1$ and $\sum_{i=1}^{n} a_{i}=1$. For each $i=1,2, \ldots, n$, let $b_{i}=a_{i}^{2} / \sum_{j=1}^{n} a_{j}^{2}$ Prove that

$$
\sum_{i=1}^{n} \frac{a_{i}}{1-a_{i}} \leq \sum_{i=1}^{n} \frac{b_{i}}{1-b_{i}}
$$

When does equality occur?
Problem 8 (IrMO 2013). Prove that

$$
1-\frac{1}{2012}\left(\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{2013}\right) \geq \frac{1}{\sqrt[2012]{2013}}
$$

Problem 9 (IrMO 2013). Let a, b, c be real numbers and let

$$
x=a+b+c, y=a^{2}+b^{2}+c^{2}, z=a^{3}+b^{3}+c^{3} \quad \text { and } \quad S=2 x^{3}-9 x y+9 z
$$

(a) Prove that S is unchanged when a, b, c are replaced by $a+t, b+t, c+t$, respectively, for any real number t (b) Prove that $\left(3 y-x^{2}\right)^{3} \geq 2 S^{2}$

Problem 10 (IrMO 2012). Suppose a, b, c are positive numbers. Prove that

$$
\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+1\right)^{2} \geq(2 a+b+c)\left(\frac{2}{a}+\frac{1}{b}+\frac{1}{c}\right)
$$

with equality if and only if $a=b=c$
Problem 11 (IrMO 2012). (a) Show that if x and y are positive real numbers, then

$$
(x+y)^{5} \geq 12 x y\left(x^{3}+y^{3}\right)
$$

(b) Prove that the constant 12 is the best possible. In other words, prove that for any $K>12$ there exist positive real numbers x and y such that

$$
(x+y)^{5}<K x y\left(x^{3}+y^{3}\right)
$$

Problem 12 (IrMO 2011). Suppose that x, y and z are positive numbers such that

$$
1=2 x y z+x y+y z+z x
$$

Prove that
(a)

$$
\frac{3}{4} \leq x y+y z+z x<1
$$

(b)

$$
x y z \leq \frac{1}{8}
$$

thus, deduce that

$$
\begin{equation*}
x+y+z \geq \frac{3}{2} \tag{1}
\end{equation*}
$$

and derive the case of equality in Equation il.
Problem 13 (IrMO 2010). Suppose x, y, z are positive numbers such that $x+y+z=1$.
Prove that
(a) $x y+y z+z x \geq 9 x y z$
(b) $x y+y z+z x<\frac{1}{4}+3 x y z$

Problem 14 (IrMO 2009). Suppose a, b, c are real numbers such that $a+b+c=0$ and $a^{2}+b^{2}+c^{2}=1$. Prove that

$$
a^{2} b^{2} c^{2} \leq \frac{1}{54}
$$

and determine the cases of equality.
Problem 15 (IrMO 2009). Suppose that x, y and z are positive real numbers such that $x y z \geq 1$

- Prove that

$$
27 \leq(1+x+y)^{2}+(1+y+z)^{2}+(1+z+x)^{2}
$$

with equality if and only if $x=y=z=1$

- Prove that

$$
(1+x+y)^{2}+(1+y+z)^{2}+(1+z+x)^{2} \leq 3(x+y+z)^{2}
$$

with equality if and only if $x=y=z=1$
Problem 16 (IrMO 2008). For positive real numbers a, b, c and d such that $a^{2}+b^{2}+$ $c^{2}+d^{2}=1$ prove that

$$
a^{2} b^{2} c d+a b^{2} c^{2} d+a b c^{2} d^{2}+a^{2} b c d^{2}+a^{2} b c^{2} d+a b^{2} c d^{2} \leq \frac{3}{32}
$$

and determine the cases of equality.
Problem 17 (IrMO 2007). Suppose a, b and c are positive real numbers. Prove that

$$
\frac{a+b+c}{3} \leq \sqrt{\frac{a^{2}+b^{2}+c^{2}}{3}} \leq \frac{\frac{a b}{c}+\frac{b c}{a}+\frac{c a}{b}}{3}
$$

For each of the inequalities, find conditions on a, b and c such that equality holds.
Problem 18 (IrMO 2006). Suppose x and y are positive real numbers such that $x+$ $2 y=1$. Prove that

$$
\frac{1}{x}+\frac{2}{y} \geq \frac{25}{1+48 x y^{2}}
$$

Problem 19 (IrMO 2005). Suppose a, b and c are non-negative real numbers. Prove that $\frac{1}{3}\left[(a-b)^{2}+(b-c)^{2}+(c-a)^{2}\right] \leq a^{2}+b^{2}+c^{2}-3 \sqrt[3]{a^{2} b^{2} c^{2}} \leq(a-b)^{2}+(b-c)^{2}+$ $(c-a)^{2}$

Problem 20 (IrMO 2004). Define the function m of the three real variables x, y, z by

$$
m(x, y, z)=\max \left(x^{2}, y^{2}, z^{2}\right), x, y, z \in \mathbb{R}
$$

Determine, with proof, the minimum value of m if x, y, z vary in \mathbb{R} subject to the following restrictions:

$$
x+y+z=0, \quad x^{2}+y^{2}+z^{2}=1
$$

Problem 21 (IrMO 2004). Let $a, b \geq 0$. Prove that

$$
\sqrt{2}\left(\sqrt{a(a+b)^{3}}+b \sqrt{a^{2}+b^{2}}\right) \leq 3\left(a^{2}+b^{2}\right)
$$

with equality if and only if $a=b$

Problem 22 (IrMO 2003). Let T be a triangle of perimeter 2 , and let a, b and c be the lengths of the sides of T.
(a) Show that

$$
a b c+\frac{28}{27} \geq a b+b c+a c
$$

(b) Show that

$$
a b+b c+a c \geq a b c+1
$$

Problem 23 (IrMO 2002). Let $0<a, b, c<1$. Prove that

$$
\frac{a}{1-a}+\frac{b}{1-b}+\frac{c}{1-c} \geq \frac{3 \sqrt[3]{a b c}}{1-\sqrt[3]{a b c}}
$$

Determine the case of equality.
Problem 24 (IrMO 2001). Prove that
(a) $\frac{2 n}{3 n+1} \leq \sum_{k=n+1}^{2 n} \frac{1}{k}$
(b) $\sum_{k=n+1}^{2 n} \frac{1}{k} \leq \frac{3 n+1}{4(n+1)}$
for all positive integers n
Problem 25 (IrMO 2000). Let $A B C D$ be a cyclic quadrilateral and R the radius of the circumcircle. Let a, b, c, d be the lengths of the sides of $A B C D$ and Q its area. Prove that

$$
R^{2}=\frac{(a b+c d)(a c+b d)(a d+b c)}{16 Q^{2}}
$$

Deduce that

$$
R \geq \frac{(a b c d)^{3 / 4}}{Q \sqrt{2}}
$$

with equality if and only if $A B C D$ is a square.
Problem 26 (IrMO 2000). Let $x \geq 0, y \geq 0$ be real numbers with $x+y=2$. Prove that

$$
x^{2} y^{2}\left(x^{2}+y^{2}\right) \leq 2
$$

Problem 27 (IrMO 1999). Let a, b, c and d be positive real numbers whose sum is 1 .
Prove that

$$
\frac{a^{2}}{a+b}+\frac{b^{2}}{b+c}+\frac{c^{2}}{c+d}+\frac{d^{2}}{d+a} \geq \frac{1}{2}
$$

with equality if, and only if, $a=b=c=d=1 / 4$
Problem 28 (IrMO 1999). Find all real values x that satisfy

$$
\frac{x^{2}}{(x+1-\sqrt{x+1})^{2}}<\frac{x^{2}+3 x+18}{(x+1)^{2}}
$$

Problem 29. Prove that if a, b, c are positive real numbers, then
(a) $\frac{9}{a+b+c} \leq 2\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)$
(b) $\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a} \leq \frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)$

Problem 30 (IrMO 1998). Show that if x is a nonzero real number, then

$$
x^{8}-x^{5}-\frac{1}{x}+\frac{1}{x^{4}} \geq 0
$$

Problem 31 (IrMO 1997). Suppose a, b and c are nonnegative real numbers such that $a+b+c \geq a b c$. Prove that $a^{2}+b^{2}+c^{2} \geq a b c$

Problem 32 (IrMO 1996). Prove that the inequality

$$
2^{\frac{1}{2}} \cdot 4^{\frac{1}{4}} \cdot 8^{\frac{1}{8}} \cdots\left(2^{n}\right)^{\frac{1}{2^{n}}}<4
$$

holds for all positive integers n
Problem 33 (IrMO 1995). Prove the inequalities $n^{n} \leq(n!)^{2} \leq[(n+1)(n+2) / 6]^{n}$ for every positive integer n

Problem 34 (IrMO 1994). Prove that, for every integer $n>1$

$$
n\left((n+1)^{2 / n}-1\right)<\sum_{i=1}^{n} \frac{2 i+1}{i^{2}}<n\left(1-n^{-2 /(n-1)}\right)+4
$$

Problem 35 (IrMO 1994). Let $f(n)$ be defined on the set of positive integers by the rules: $f(1)=2$ and

$$
f(n+1)=(f(n))^{2}-f(n)+1, \quad n=1,2,3, \ldots
$$

Prove that, for all integers $n>1$

$$
1-\frac{1}{2^{2 n-1}}<\frac{1}{f(1)}+\frac{1}{f(2)}+\ldots+\frac{1}{f(n)}<1-\frac{1}{2^{2^{n}}}
$$

Problem 36 (IrMO 1992). Let a, b, c and d be real numbers with $a \neq 0$. Prove that if all the roots of the cubic equation

$$
a z^{3}+b z^{2}+c z+d=0
$$

lie to the left of the imaginary axis in the complex plane, then

$$
a b>0, b c-a d>0, a d>0
$$

Problem 37 (IrMO 1992). If, for $k=1,2, \ldots, n, a_{k}$ and b_{k} are positive real numbers, prove that

$$
\sqrt[n]{a_{1} a_{2} \cdots a_{n}}+\sqrt[n]{b_{1} b_{2} \cdots b_{n}} \leq \sqrt[n]{\left(a_{1}+b_{1}\right)\left(a_{2}+b_{2}\right) \cdots\left(a_{n}+b_{n}\right)}
$$

and that equality holds if, and only if,

$$
\frac{a_{1}}{b_{1}}=\frac{a_{2}}{b_{2}}=\cdots=\frac{a_{n}}{b_{n}}
$$

Problem 38 (IrMO 1992). Describe in geometric terms the set of points (x, y) in the plane such that x and y satisfy the condition $t^{2}+y t+x \geq 0$ for all t with $-1 \leq t \leq 1$

Problem 39 (IrMO 1991). Let

$$
a_{n}=\frac{n^{2}+1}{\sqrt{n^{4}+4}}, \quad n=1,2,3, \ldots
$$

and let b_{n} be the product of $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$. Prove that

$$
\begin{aligned}
& \qquad \frac{b_{n}}{\sqrt{2}}=\frac{\sqrt{n^{2}+1}}{\sqrt{n^{2}+2 n+2}} \\
& \text { and deduce that } \\
& \frac{1}{n^{3}+1}<\frac{b_{n}}{\sqrt{2}}-\frac{n}{n+1}<\frac{1}{n^{3}}
\end{aligned}
$$

for all positive integers n
Problem 40 (IrMO 1990). The real number x satisfies all the inequalities

$$
2^{k}<x^{k}+x^{k+1}<2^{k+1}
$$

for $k=1,2, \ldots, n$. What is the greatest possible value of n ?
Problem 41 (IrMO 1989). Suppose P is a point in the interior of a triangle $A B C$, that x, y, z are the distances from P to A, B, C, respectively, and that p, q, r are the perpendicular distances from P to the sides $B C, C A, A B$ respectively. Prove that $x y z \geq$ $8 p q r$ with equality implying that the triangle $A B C$ is equilateral.

Problem 42 (IrMO 1988). Let $0 \leq x \leq 1$. Show that if n is any positive integer, then

$$
(1+x)^{n} \geq(1-x)^{n}+2 n x\left(1-x^{2}\right)^{\frac{n-1}{2}}
$$

