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1 Useful Inequalities
The following is a list of inequalities that are sufficient to solve every problem in the
‘EGMO Problems’ section of this handout. They are in a general order of usefulness.

Theorem (AM-GM Inequality). For a collection of 𝑛 non-negative real numbers 𝑎1, 𝑎2,
… , 𝑎𝑛, we have 𝑎1 + 𝑎2 +⋯+ 𝑎𝑛

𝑛 ≥ 𝑛√𝑎1𝑎2 ⋯𝑎𝑛,

with equality if and only if 𝑎1 = 𝑎2 = ⋯ = 𝑎𝑛.1 1AM is the
arithmetic mean,
and GM is the
geometric mean.

Theorem (RMS-AM-GM-HM Inequality). For 𝑛 non-negative real numbers 𝑎1, 𝑎2, … ,
𝑎𝑛, the following holds.

√𝑎21 + 𝑎22 +⋯+ 𝑎2𝑛
𝑛 ≥ 𝑎1 + 𝑎2 +⋯+ 𝑎𝑛

𝑛 ≥ 𝑛√𝑎1𝑎2 ⋯𝑎𝑛 ≥ 𝑛
1
𝑎1

+ 1
𝑎2

+⋯+ 1
𝑎𝑛

with equality if and only if 𝑎1 = 𝑎2 = ⋯ = 𝑎𝑛.2 2RMS is the root
mean squared, and
HM is the
harmonic mean.

Theorem (Cauchy-Schwarz Inequality). For the sequences of real numbers 𝑎1, 𝑎2, … ,
𝑎𝑛 and 𝑏1, 𝑏2, … , 𝑏𝑛, we have

(𝑎1𝑏1 + 𝑎2𝑏2 +⋯+ 𝑎𝑛𝑏𝑛)2 ≤ (𝑎21 + 𝑎22 +⋯+ 𝑎2𝑛) ⋅ (𝑏21 + 𝑏22 +⋯+ 𝑏2𝑛),

with equality if and only if 𝑎𝑖
𝑏𝑖 is a constant for all 1 ≤ 𝑖 ≤ 𝑛.

Theorem (Holder’s Inequality). For sequences 𝑎𝑖, 𝑏𝑖, … , 𝑧𝑖, and 𝜆𝑎 +𝜆𝑏 +⋯+𝜆𝑧 = 1,
we have

𝑎𝜆𝑎
1 𝑏𝜆𝑏

1 ⋯𝑧𝜆𝑧
1 +⋯+ 𝑎𝜆𝑎𝑛 𝑏𝜆𝑏𝑛 ⋯𝑧𝜆𝑧𝑛 ≤ (𝑎1 + 𝑎2 +⋯+ 𝑎𝑛)𝜆𝑎 ⋯(𝑧1 + 𝑧2 +⋯+ 𝑧𝑛)𝜆𝑛 .

Theorem (Triangle Inequalty). 𝑎, 𝑏, and 𝑐 are the sidelengths of a triangle if and only
if all of the following holds.

𝑏 + 𝑐 > 𝑎, 𝑎 + 𝑐 > 𝑏, and 𝑎 + 𝑏 > 𝑐

Theorem (Rearrangement Inequality). For two sequences 𝑎1 ≥ 𝑎2 ≥ ⋯ ≥ 𝑎𝑛 and
𝑏1 ≥ 𝑏2 ≥ ⋯ ≥ 𝑏𝑛 then

𝑎1𝑏1 + 𝑎2𝑏2 +⋯+ 𝑎𝑛𝑏𝑛 ≥ 𝑎1𝑏𝜋(1) + 𝑎2𝑏𝜋(2) +⋯+ 𝑎𝑛𝑏𝜋(𝑛) ≥ 𝑎1𝑏𝑛 + 𝑎2𝑏𝑛−1 +⋯+ 𝑎𝑛𝑏1,

where 𝜋(1), 𝜋(2), … , 𝜋(𝑛) is any permutation of 1, 2,… , 𝑛.
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EGMO Problems

Problem 1 (EGMO TST 2020). Let 𝑎, 𝑏, 𝑐 ≥ 0 be real numbers with 𝑎+𝑏+
𝑐 = 1 Show that:

1 ≤ √𝑎(1 + 𝑏) +√𝑏(1 + 𝑐) +√𝑐(1 + 𝑎) ≤ 2

Hint: For the LHS, note that √𝑎(1 + 𝑏) ≥
√
𝑎2. For the RHS, try using the condition

given along Cauchy-Schwarz.

Solution: We show the RHS first. Using the condition 𝑎 + 𝑏 + 𝑐 = 1,

∑
𝑐𝑦𝑐

√𝑎(1 + 𝑏) ≤ 2

⟺ ∑
𝑐𝑦𝑐

√𝑎
√
𝑎 + 𝑏 + 𝑐 + 𝑏 ≤ 2

By Cauchy-Schwarz,

∑
𝑐𝑦𝑐

√𝑎
√
𝑎 + 𝑏 + 𝑐 + 𝑏 ≤

√
𝑎 + 𝑏 + 𝑐√(𝑎 + 𝑏 + 𝑐 + 𝑏) + (𝑎 + 𝑏 + 𝑐 + 𝑐) + (𝑎 + 𝑏 + 𝑐 + 𝑎)

=
√
𝑎 + 𝑏 + 𝑐

√
4𝑎 + 4𝑏 + 4𝑐

= 2

as required. For the LHS, we note that √𝑎(1 + 𝑏) ≥
√
𝑎2, as 1 + 𝑏 ≥ 𝑎, thus

∑
𝑐𝑦𝑐

√𝑎(1 + 𝑏) ≥ 𝑎 + 𝑏 + 𝑐 = 1,

completing the proof.

Problem 2 (EGMO TST 2019). Let 𝑎, 𝑏, 𝑐 be the sides of a triangle. Prove
that 𝑎

𝑏 + 𝑐 + 𝑏
𝑐 + 𝑎 + 𝑐

𝑎 + 𝑏 < 2

Hint: Use the triangle inequality, 𝑏 + 𝑐 ≥ 𝑎 to derive 𝑎
2(𝑏+𝑐) < 𝑎

𝑎+𝑏+𝑐 , and sum.

Solution: As 𝑎, 𝑏, 𝑐 are the sides of a triangle, 𝑏 + 𝑐 > 𝑎 and vice versa. Thus

𝑎
𝑏 + 𝑐 < 2𝑎

𝑎 + 𝑏 + 𝑐 .

Cycling the variables and summing yields

𝑎
𝑏 + 𝑐 + 𝑏

𝑐 + 𝑎 + 𝑐
𝑎 + 𝑏 < 2𝑎

𝑎 + 𝑏 + 𝑐 + 2𝑏
𝑎 + 𝑏 + 𝑐 + 2𝑏

𝑎 + 𝑏 + 𝑐
= 2(𝑎 + 𝑏 + 𝑐

𝑎 + 𝑏 + 𝑐)

= 2,

as required.
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Problem 3 (EGMO TST 2019). Let 0 < 𝑥, 𝑦, 𝑧 < 1. Show that:

1
𝑥(1 − 𝑦) + 1

𝑦(1 − 𝑧) + 1
𝑧(1 − 𝑥) ≥ 12

Hint: Using AM-GM will allow you to regroup terms, resulting with 1
𝑥(1−𝑥) . Another

application of AM-GM then gives the required result.

Solution: By AM-GM,

∑
𝑐𝑦𝑐

1
𝑥(1 − 𝑦) ≥ 3 ⋅ (1

𝑥
1

(1 − 𝑦)
1
𝑦

1
(1 − 𝑧)

1
𝑧

1
(1 − 𝑥))

1
3

= 3( 1
𝑥(1 − 𝑥))

1
3

( 1
𝑦(1 − 𝑦))

1
3

( 1
𝑧(1 − 𝑧))

1
3

Considering each term of the product and again applying AM-GM,

√𝑥(1 − 𝑥) ≤ 𝑥 + 1 − 𝑥
2 = 1

2
⟹ 𝑥(1 − 𝑥) ≤ 1

4
⟹ 1

𝑥(1 − 𝑥) ≥ 4

Finally,

∑
𝑐𝑦𝑐

1
𝑥(1 − 𝑦) ≥ 3 ⋅ 4 1

3 ⋅ 4 1
3 ⋅ 4 1

3

= 12.

Problem 4 (EGMO TST 2018).
1. Prove that for any positive real numbers 𝑥, 𝑦 we have 𝑥3+𝑦3 ≥ 𝑥2𝑦+𝑥𝑦2
2. Prove that for any real numbers 0 ≤ 𝑥, 𝑦, 𝑧 ≤ 1 we have

3 + 𝑥3 + 𝑦3 + 𝑧3 ≥ 𝑥2 + 𝑦2 + 𝑧2 + 𝑥 + 𝑦 + 𝑧

Hint: For (a), either AM-GM or rearrangement will suffice. For (b), note that it is
true if 1 + 𝑥3 ≥ 𝑥2 + 𝑥.

Solution:

1. This is a well known inequality with a number of standard proofs.

Using the rearrangement inequality, assume WLOG that 𝑥 ≥ 𝑦. Then,

𝑥 ⋅ 𝑥 ⋅ 𝑥 + 𝑦 ⋅ 𝑦 ⋅ 𝑦 ≥ 𝑥 ⋅ 𝑥 ⋅ 𝑦 + 𝑦 ⋅ 𝑦 ⋅ 𝑥

as required.

Alternatively, using AM-GM,

2𝑥3 + 𝑦3 ≥ 3(𝑥3𝑥3𝑦3) 1
3 = 3𝑥2𝑦.
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Similarly, 2𝑦3 + 𝑥3 ≥ 3𝑦2𝑥. Adding, we get

3𝑥3 + 3𝑦3 ≥ 3𝑥2𝑦 + 3𝑦2𝑥
⟹ 𝑥3 + 𝑦3 ≥ 𝑥2𝑦 + 𝑥𝑦2

2. Begin by noticing this is true if 1 + 𝑥3 ≥ 𝑥2 + 𝑥.

1 + 𝑥3 ≥ 𝑥2 + 𝑥
⟺ 𝑥3 − 𝑥2 − 𝑥 + 1 ≥ 0

⟺ (𝑥 − 1)(𝑥 + 1)(𝑥 − 1) ≥ 0,

which is true, finishing the proof.

Problem 5 (EGMO TST 2017). Triangle 𝐴𝐵𝐶 has area 𝑆. Denote by 𝑀,𝑁
and 𝑃 the midpoints of 𝐵𝐶,𝐶𝐴 and 𝐴𝐵 respectively. Prove that

2𝑆 ( 1
𝐴𝐵 + 1

𝐵𝐶 + 1
𝐶𝐴) ≤ 𝐴𝑀 +𝐵𝑁 +𝐶𝑃 < 3

2(𝐴𝐵 +𝐵𝐶 + 𝐶𝐴)

Hint: Drawing a picture will help a lot. Looking at the distances will allow you to solve
both the LHS and RHS seperately.

Solution: Consider the following diagram.

We begin by rewriting the LHS of the inequality. Let ℎ𝑐 denote the length of the
perpendicular from a point 𝐶 to the opposite side. Then,

2𝑆 ( 1
𝐴𝐵 + 1

𝐵𝐶 + 1
𝐶𝐴) = ( 2𝑆

𝐴𝐵 + 2𝑆
𝐵𝐶 + 2𝑆

𝐶𝐴)

= ℎ𝑐 + ℎ𝑎 + ℎ𝑏.

The shortest distance between a line and a point is the perpendicular distance, thus
ℎ𝑐 ≤ 𝐶𝑃 and so on, thus

ℎ𝑐 + ℎ𝑎 + ℎ𝑏 ≤ 𝐴𝑀 +𝐵𝑀 +𝐶𝑃,

so the LHS is true.

For the RHS, we note that it is sufficient to prove that 𝐴𝑀 < (𝐴𝐵 + 𝐵𝐶 + 𝐶𝐴)/2.
With this in mind, using the same principle as before (shortest distance to a line is
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perpendicular), we get

𝐴𝑀 ≤ 𝐴𝐶, 𝐴𝑀 ≤ 𝐴𝐵
⟹ 2𝐴𝑀 ≤ 𝐴𝐶 +𝐴𝐵
⟹ 2𝐴𝑀 < 𝐴𝐶 +𝐴𝐵 +𝐵𝐶

⟹ 𝐴𝑀 < 𝐴𝐶 +𝐴𝐵 +𝐵𝐶
2

This can be repeated for 𝐵𝑁 and 𝐶𝑃 , and summing the results yeilds the RHS, finishing
the proof.

Problem 6 (EGMO TST 2017). The positive real numbers 𝑎, 𝑏, 𝑐 satisfy the
double inequality

𝑏2
𝑎 + 𝑏 + 𝑐2

𝑏 + 𝑐 + 𝑎2
𝑐 + 𝑎 ≥ 𝑐2

𝑎 + 𝑏 + 𝑎2
𝑏 + 𝑐 + 𝑏2

𝑐 + 𝑎 ≥ 𝑎2
𝑎 + 𝑏 + 𝑏2

𝑏 + 𝑐 + 𝑐2
𝑐 + 𝑎

Prove that 𝑎 = 𝑏 = 𝑐

Hint: It can be shown that the LHS is equal the RHS, thus comparing the LHS and the
middle allows you to get terms of the form ∑(𝑎2 − 𝑏2)2 ≥ 0, which will finish off the
problem.

Solution: This is a not-so-fun bashy problem, but we shall proceed regardless. We begin
by showing the RHS and LHS are equal.

( 𝑏2
𝑎 + 𝑏 + 𝑐2

𝑏 + 𝑐 + 𝑎2
𝑐 + 𝑎) − ( 𝑎2

𝑎 + 𝑏 + 𝑏2
𝑏 + 𝑐 + 𝑐2

𝑐 + 𝑎)

= (𝑏2 − 𝑎2
𝑎 + 𝑏 ) + (𝑐2 − 𝑏2

𝑏 + 𝑐 ) + (𝑎2 − 𝑐2
𝑐 + 𝑎 )

= 𝑏2 − 𝑎2 + 𝑐2 − 𝑏2 + 𝑎2 − 𝑐2

= 0

Thus, the LHS is equal to the middle. Similar to before,

(𝑏2 − 𝑐2
𝑎 + 𝑏 ) + (𝑐2 − 𝑎2

𝑏 + 𝑐 ) + (𝑎2 − 𝑏2
𝑐 + 𝑎 ) = 0

⟹ (𝑏 + 𝑐)(𝑏 − 𝑐))
𝑎 + 𝑏 + (𝑐 + 𝑎)(𝑐 − 𝑎)

𝑏 + 𝑐 + (𝑎 − 𝑏)(𝑎 + 𝑏)
𝑐 + 𝑎 = 0

⟹ (𝑎 + 𝑏)(𝑏 + 𝑐)2(𝑏 − 𝑐) + (𝑎 + 𝑏)(𝑐 − 𝑎)(𝑐 + 𝑎)2 + (𝑎 + 𝑏)2(𝑎 − 𝑏)(𝑏 + 𝑐) = 0
⟹ 𝑎2𝑏2 + 𝑏2𝑐2 + 𝑐2𝑎2 − 𝑎4 − 𝑏4 − 𝑐4 = 0

⟹ (𝑎2 − 𝑏2)2 + (𝑏2 − 𝑐2)2 + (𝑐2 − 𝑎2)2 = 0

therefore 𝑎 = 𝑏, 𝑏 = 𝑐 and 𝑎 = 𝑐.

Problem 7 (EGMO TST 2015). Let 𝑥, 𝑦, 𝑧, 𝑤 be positive real numbers, and
suppose that 𝑥𝑦𝑧𝑤 = 16. Show that

𝑥2

𝑥 + 𝑦 + 𝑦2
𝑦 + 𝑧 + 𝑧2

𝑧 + 𝑤 + 𝑤2

𝑤 + 𝑥 ≥ 4
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with equality only when 𝑥 = 𝑦 = 𝑧 = 𝑤 = 2

Hint: Use Cauchy Schwarz to combine the denominators, followed by AM-GM to turn
the sums into products, allowing you to use the 𝑥𝑦𝑧𝑤 = 16 condition.

Solution: Applying Cauchy-Schwarz,

√√√
⎷

∑
𝑐𝑦𝑐

( 𝑥√𝑥 + 𝑦)
2
⋅ √∑

𝑐𝑦𝑐
(√𝑥 + 𝑦)2 ≥ 𝑥 + 𝑦 + 𝑧 + 𝑤

⟺ √∑
𝑐𝑦𝑐

𝑥2

𝑥 + 𝑦 ⋅ √2(𝑥 + 𝑦 + 𝑧 + 𝑤) ≥ 𝑥 + 𝑦 + 𝑧 + 𝑤

⟺ ∑
𝑐𝑦𝑐

𝑥2

𝑥 + 𝑦 ≥ 𝑥 + 𝑦 + 𝑧 + 𝑤
2

Applying AM-GM, we have

𝑥 + 𝑦 + 𝑧 + 𝑤 ≥ 4(𝑥𝑦𝑧𝑤) 1
4

= 4(16) 1
4

= 8,

allowing us to finish the inequality,

∑
𝑐𝑦𝑐

𝑥2

𝑥 + 𝑦 ≥ 8√
2
= 4.

To finish the proof, we note that for equality to occur, the use of AM-GM and Cauchy-
Schwarz implies that 𝑥 = 𝑦 = 𝑧 = 𝑤. Then, the condition that 𝑥𝑦𝑧𝑤 = 16 forces a
unique equality, when all variables are 2. Checking, we find that this is correct.

Problem 8 (EGMO TST 2014). Prove that if 𝑎 and 𝑏 are positive real
numbers,

3√𝑎
𝑏 + 3√𝑏

𝑎 ≤ 3√2(𝑎 + 𝑏)(1
𝑎 + 1

𝑏)

Hint: This is a perfect use case for Holder’s inequality, a generalization of Cauchy-
Schwarz!

Solution: Using Holder’s inequality, we have

1 1
3 ⋅ 𝑎 1

3 ⋅ (1
𝑏)

1
3
+ 1 1

3 ⋅ 𝑏 1
3 ⋅ (1

𝑎)
1
3
≤ (1 + 1) 1

3 (𝑎 + 𝑏) 1
3 (1

𝑎 + 1
𝑏)

⟺ 3√𝑎
𝑏 + 3√𝑏

𝑎 ≤ 3√2(𝑎 + 𝑏)(1
𝑎 + 1

𝑏).
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Problem 9 (EGMO TST 2013). Let 𝑥, 𝑦 be positive integers with 3𝑥+4𝑦+
𝑥𝑦 = 2012

1. Prove that 𝑥 + 𝑦 ≥ 83.
2. Prove also that the same inequality is valid if 2012 is replaced by 2013.

Hint: This looks like an inequality, but the positive integer condition makes it look a
little like a number theory problem. Solving like a diophantine equation can help here.

Solution:

1. We begin by factoring the given condition, 3 3This factoring
method is
sometimes called
‘Simons Favourite
Factoring Trick’,
from the early
years of the AoPS
website.

3𝑥 + 4𝑦 + 𝑥𝑦 = 2012
⟹ (𝑥 + 4)(𝑦 + 3) − 12 = 2012

⟹ (𝑥 + 4)(𝑦 + 3) = 2024

So if 𝑎𝑏 = 2024 are two factors of 2024, then

𝑥 + 4 = 𝑎, 𝑦 + 3 = 𝑏 ⟹ 𝑥+ 𝑦 = 𝑎 + 𝑏 − 7

thus it is sufficient to show there is no factor pairs with a sum less than 90. 2024 =
23×11×23, and using rearrangement we find that 23 ⋅ 2+11 ⋅ 2 ⋅ 2 = 90 is minium,
so this is true.

2. Replacing 2012 with 2013, we again find that it’s sufficient to show there is no
factor pairs with a sum of less than 90. Factoring, 2013 = 3 × 11 × 61, thus the
minimum sum is 61 + 11 ⋅ 3 = 94, so this is also true.

Problem 10 (EGMO TST 2012). Prove that for all positive real numbers
𝑥 and 𝑦 satisfying 𝑥 + 𝑦 = 1 the following inequality holds

(𝑥 + 1
𝑥)

2
+ (𝑦 + 1

𝑦)
2
≥ 25

2 .

Hint: The squares are vaguelly reminiscent of RMS, and the 1/𝑥 and 1/𝑦 terms are
reminiscent of HM, so such inequalities may be helpful.

Solution: With the intention of applying AM-RMS, we rewrite the inequality as the
equivalent √√

⎷
(𝑥 + 1

𝑥)
2 + (𝑦 + 1

𝑦)
2

2 ≥ 5
2.

Then, by AM-RMS,

√√
⎷

(𝑥 + 1
𝑥)

2 + (𝑦 + 1
𝑦)

2

2 ≥
𝑥 + 𝑦 + 1

𝑥 + 1
𝑦

2 =
1 + 1

𝑥 + 1
𝑦

2 ,
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thus we must prove 1
𝑥 + 1

𝑦 ≥ 4. This is straightforward using AM-HM,

2
1
𝑥 + 1

𝑦
≤ 𝑥 + 𝑦

2 = 1
2

⟺ 1
1
𝑥 + 1

𝑦
≤ 1

4

⟺ 1
𝑥 + 1

𝑦 ≥ 4,

finishing the proof.

Past Problems
This is a collection of all inequality problems that have appeared in the Irish Mathemat-
ical Olympiad. The questions are ordered chronologically. All problems are due to their
respective creators.

Problem 1 (IrMO 2019). Supose 𝑥, 𝑦, 𝑧 are real mumbers such that 𝑥2 + 𝑦2 + 𝑧2 +
2𝑥𝑦𝑧 = 1. Prove that 8𝑥𝑦𝑧 ≤ 1 with equality if and only if (𝑥, 𝑦, 𝑧) is one of the
following:

(1
2,

1
2 ,

1
2) , (−1

2,−
1
2,

1
2) , (−1

2,
1
2 ,−

1
2) , (1

2 ,−
1
2 ,−

1
2)

Problem 2 (IrMO 2018). Let 𝑎, 𝑏, 𝑐 be the side lengths of a triangle. Prove that

2 (𝑎3 + 𝑏3 + 𝑐3) < (𝑎 + 𝑏 + 𝑐) (𝑎2 + 𝑏2 + 𝑐2) ≤ 3 (𝑎3 + 𝑏3 + 𝑐3)

Problem 3 (IrMO 2017). Show that for all non-negative numbers 𝑎, 𝑏

1 + 𝑎2017 + 𝑏2017 ≥ 𝑎10𝑏7 + 𝑎7𝑏2000 + 𝑎2000𝑏10

When is equality attained?

Problem 4 (IrMO 2016). Let 𝑎1, 𝑎2,… , 𝑎𝑚 be positive integers, none of which is equal
to 10, such that 𝑎1 + 𝑎2 +⋯+ 𝑎𝑚 = 10𝑚. Prove that

(𝑎1𝑎2𝑎3 ⋯𝑎𝑚)1/𝑚 ≤ 3
√
11

Problem 5 (IrMO 2015). Suppose 𝑥, 𝑦 are nonnegative real numbers such that 𝑥+𝑦 ≤
1. Prove that 8𝑥𝑦 ≤ 5𝑥(1 − 𝑥) + 5𝑦(1 − 𝑦)

eand determine the cases of equality.

Problem 6 (IrMO 2015). Prove that, for all pairs of nonnegative integers, 𝑗, 𝑛
𝑛

∑
𝑘=0

𝑘𝑗 ( 𝑛
𝑘 ) ≥ 2𝑛−𝑗𝑛𝑗
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Problem 7 (IrMO 2014). Suppose 𝑎1,… , 𝑎𝑛 > 0, where 𝑛 > 1 and ∑𝑛
𝑖=1 𝑎𝑖 = 1. For

each 𝑖 = 1, 2,… , 𝑛, let 𝑏𝑖 = 𝑎2𝑖 /∑
𝑛
𝑗=1 𝑎2𝑗 Prove that

𝑛
∑
𝑖=1

𝑎𝑖
1 − 𝑎𝑖

≤
𝑛

∑
𝑖=1

𝑏𝑖
1 − 𝑏𝑖

When does equality occur?

Problem 8 (IrMO 2013). Prove that

1 − 1
2012 (1

2 + 1
3 + ⋯+ 1

2013) ≥ 1
2012√2013

Problem 9 (IrMO 2013). Let 𝑎, 𝑏, 𝑐 be real numbers and let

𝑥 = 𝑎 + 𝑏 + 𝑐, 𝑦 = 𝑎2 + 𝑏2 + 𝑐2, 𝑧 = 𝑎3 + 𝑏3 + 𝑐3 and 𝑆 = 2𝑥3 − 9𝑥𝑦 + 9𝑧

(a) Prove that 𝑆 is unchanged when 𝑎, 𝑏, 𝑐 are replaced by 𝑎+ 𝑡, 𝑏 + 𝑡, 𝑐 + 𝑡, respectively,
for any real number 𝑡 (b) Prove that (3𝑦 − 𝑥2)3 ≥ 2𝑆2

Problem 10 (IrMO 2012). Suppose 𝑎, 𝑏, 𝑐 are positive numbers. Prove that

(𝑎
𝑏 + 𝑏

𝑐 + 𝑐
𝑎 + 1)

2
≥ (2𝑎 + 𝑏 + 𝑐)(2

𝑎 + 1
𝑏 + 1

𝑐)

with equality if and only if 𝑎 = 𝑏 = 𝑐

Problem 11 (IrMO 2012). (a) Show that if 𝑥 and 𝑦 are positive real numbers, then

(𝑥 + 𝑦)5 ≥ 12𝑥𝑦 (𝑥3 + 𝑦3)

(b) Prove that the constant 12 is the best possible. In other words, prove that for any
𝐾 > 12 there exist positive real numbers 𝑥 and 𝑦 such that

(𝑥 + 𝑦)5 < 𝐾𝑥𝑦 (𝑥3 + 𝑦3)

Problem 12 (IrMO 2011). Suppose that 𝑥, 𝑦 and 𝑧 are positive numbers such that

1 = 2𝑥𝑦𝑧 + 𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥

Prove that

(a) 3
4 ≤ 𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥 < 1

(b)
𝑥𝑦𝑧 ≤ 1

8

thus, deduce that
𝑥 + 𝑦 + 𝑧 ≥ 3

2 (1)

and derive the case of equality in Equation 1.

Problem 13 (IrMO 2010). Suppose 𝑥, 𝑦, 𝑧 are positive numbers such that 𝑥+𝑦+𝑧 = 1.
Prove that

(a) 𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥 ≥ 9𝑥𝑦𝑧
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(b) 𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥 < 1
4 + 3𝑥𝑦𝑧

Problem 14 (IrMO 2009). Suppose 𝑎, 𝑏, 𝑐 are real numbers such that 𝑎+𝑏+𝑐 = 0 and
𝑎2 + 𝑏2 + 𝑐2 = 1. Prove that 𝑎2𝑏2𝑐2 ≤ 1

54
and determine the cases of equality.

Problem 15 (IrMO 2009). Suppose that 𝑥, 𝑦 and 𝑧 are positive real numbers such that
𝑥𝑦𝑧 ≥ 1

• Prove that 27 ≤ (1 + 𝑥 + 𝑦)2 + (1 + 𝑦 + 𝑧)2 + (1 + 𝑧 + 𝑥)2

with equality if and only if 𝑥 = 𝑦 = 𝑧 = 1

• Prove that

(1 + 𝑥 + 𝑦)2 + (1 + 𝑦 + 𝑧)2 + (1 + 𝑧 + 𝑥)2 ≤ 3(𝑥 + 𝑦 + 𝑧)2

with equality if and only if 𝑥 = 𝑦 = 𝑧 = 1

Problem 16 (IrMO 2008). For positive real numbers 𝑎, 𝑏, 𝑐 and 𝑑 such that 𝑎2 + 𝑏2 +
𝑐2 + 𝑑2 = 1 prove that

𝑎2𝑏2𝑐𝑑 + 𝑎𝑏2𝑐2𝑑 + 𝑎𝑏𝑐2𝑑2 + 𝑎2𝑏𝑐𝑑2 + 𝑎2𝑏𝑐2𝑑 + 𝑎𝑏2𝑐𝑑2 ≤ 3
32

and determine the cases of equality.

Problem 17 (IrMO 2007). Suppose 𝑎, 𝑏 and 𝑐 are positive real numbers. Prove that

𝑎 + 𝑏 + 𝑐
3 ≤ √𝑎2 + 𝑏2 + 𝑐2

3 ≤
𝑎𝑏
𝑐 + 𝑏𝑐

𝑎 + 𝑐𝑎
𝑏

3
For each of the inequalities, find conditions on 𝑎, 𝑏 and 𝑐 such that equality holds.

Problem 18 (IrMO 2006). Suppose 𝑥 and 𝑦 are positive real numbers such that 𝑥 +
2𝑦 = 1. Prove that 1

𝑥 + 2
𝑦 ≥ 25

1 + 48𝑥𝑦2

Problem 19 (IrMO 2005). Suppose 𝑎, 𝑏 and 𝑐 are non-negative real numbers. Prove
that 1

3 [(𝑎 − 𝑏)2 + (𝑏 − 𝑐)2 + (𝑐 − 𝑎)2] ≤ 𝑎2 + 𝑏2 + 𝑐2 − 3 3√𝑎2𝑏2𝑐2 ≤ (𝑎− 𝑏)2 + (𝑏 − 𝑐)2 +
(𝑐 − 𝑎)2

Problem 20 (IrMO 2004). Define the function 𝑚 of the three real variables 𝑥, 𝑦, 𝑧 by

𝑚(𝑥, 𝑦, 𝑧) = max (𝑥2, 𝑦2, 𝑧2) , 𝑥, 𝑦, 𝑧 ∈ R

Determine, with proof, the minimum value of 𝑚 if 𝑥, 𝑦, 𝑧 vary in R subject to the
following restrictions: 𝑥 + 𝑦 + 𝑧 = 0, 𝑥2 + 𝑦2 + 𝑧2 = 1

Problem 21 (IrMO 2004). Let 𝑎, 𝑏 ≥ 0. Prove that
√
2(√𝑎(𝑎 + 𝑏)3 + 𝑏√𝑎2 + 𝑏2) ≤ 3 (𝑎2 + 𝑏2)

with equality if and only if 𝑎 = 𝑏
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Problem 22 (IrMO 2003). Let 𝑇 be a triangle of perimeter 2, and let 𝑎, 𝑏 and 𝑐 be the
lengths of the sides of 𝑇 .

(a) Show that
𝑎𝑏𝑐 + 28

27 ≥ 𝑎𝑏 + 𝑏𝑐 + 𝑎𝑐

(b) Show that 𝑎𝑏 + 𝑏𝑐 + 𝑎𝑐 ≥ 𝑎𝑏𝑐 + 1

Problem 23 (IrMO 2002). Let 0 < 𝑎, 𝑏, 𝑐 < 1. Prove that

𝑎
1 − 𝑎 + 𝑏

1 − 𝑏 + 𝑐
1 − 𝑐 ≥ 3 3√𝑎𝑏𝑐

1 − 3√𝑎𝑏𝑐
Determine the case of equality.

Problem 24 (IrMO 2001). Prove that

(a) 2𝑛
3𝑛+1 ≤ ∑2𝑛

𝑘=𝑛+1
1
𝑘

(b) ∑2𝑛
𝑘=𝑛+1

1
𝑘 ≤ 3𝑛+1

4(𝑛+1)

for all positive integers 𝑛

Problem 25 (IrMO 2000). Let 𝐴𝐵𝐶𝐷 be a cyclic quadrilateral and 𝑅 the radius of
the circumcircle. Let 𝑎, 𝑏, 𝑐, 𝑑 be the lengths of the sides of 𝐴𝐵𝐶𝐷 and 𝑄 its area. Prove
that 𝑅2 = (𝑎𝑏 + 𝑐𝑑)(𝑎𝑐 + 𝑏𝑑)(𝑎𝑑 + 𝑏𝑐)

16𝑄2

Deduce that
𝑅 ≥ (𝑎𝑏𝑐𝑑)3/4

𝑄
√
2

with equality if and only if 𝐴𝐵𝐶𝐷 is a square.

Problem 26 (IrMO 2000). Let 𝑥 ≥ 0, 𝑦 ≥ 0 be real numbers with 𝑥 + 𝑦 = 2. Prove
that 𝑥2𝑦2 (𝑥2 + 𝑦2) ≤ 2

Problem 27 (IrMO 1999). Let 𝑎, 𝑏, 𝑐 and 𝑑 be positive real numbers whose sum is 1.
Prove that 𝑎2

𝑎 + 𝑏 + 𝑏2
𝑏 + 𝑐 + 𝑐2

𝑐 + 𝑑 + 𝑑2

𝑑 + 𝑎 ≥ 1
2

with equality if, and only if, 𝑎 = 𝑏 = 𝑐 = 𝑑 = 1/4

Problem 28 (IrMO 1999). Find all real values 𝑥 that satisfy

𝑥2

(𝑥 + 1 −√𝑥 + 1)2 < 𝑥2 + 3𝑥 + 18
(𝑥 + 1)2

Problem 29. Prove that if 𝑎, 𝑏, 𝑐 are positive real numbers, then

(a) 9
𝑎+𝑏+𝑐 ≤ 2 ( 1

𝑎+𝑏 + 1
𝑏+𝑐 + 1

𝑐+𝑎)

(b) 1
𝑎+𝑏 + 1

𝑏+𝑐 + 1
𝑐+𝑎 ≤ 1

2 ( 1
𝑎 + 1

𝑏 + 1
𝑐 )

Problem 30 (IrMO 1998). Show that if 𝑥 is a nonzero real number, then

𝑥8 − 𝑥5 − 1
𝑥 + 1

𝑥4 ≥ 0
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Problem 31 (IrMO 1997). Suppose 𝑎, 𝑏 and 𝑐 are nonnegative real numbers such that
𝑎 + 𝑏 + 𝑐 ≥ 𝑎𝑏𝑐. Prove that 𝑎2 + 𝑏2 + 𝑐2 ≥ 𝑎𝑏𝑐

Problem 32 (IrMO 1996). Prove that the inequality

2 1
2 ⋅ 4 1

4 ⋅ 8 1
8 ⋯(2𝑛)

1
2𝑛 < 4

holds for all positive integers 𝑛

Problem 33 (IrMO 1995). Prove the inequalities 𝑛𝑛 ≤ (𝑛!)2 ≤ [(𝑛 + 1)(𝑛 + 2)/6]𝑛 for
every positive integer 𝑛

Problem 34 (IrMO 1994). Prove that, for every integer 𝑛 > 1

𝑛 ((𝑛 + 1)2/𝑛 − 1) <
𝑛

∑
𝑖=1

2𝑖 + 1
𝑖2 < 𝑛(1 − 𝑛−2/(𝑛−1)) + 4

Problem 35 (IrMO 1994). Let 𝑓(𝑛) be defined on the set of positive integers by the
rules: 𝑓(1) = 2 and

𝑓(𝑛 + 1) = (𝑓(𝑛))2 − 𝑓(𝑛) + 1, 𝑛 = 1, 2, 3,…

Prove that, for all integers 𝑛 > 1

1 − 1
22𝑛−1 < 1

𝑓(1) + 1
𝑓(2) + …+ 1

𝑓(𝑛) < 1 − 1
22𝑛

Problem 36 (IrMO 1992). Let 𝑎, 𝑏, 𝑐 and 𝑑 be real numbers with 𝑎 ≠ 0. Prove that if
all the roots of the cubic equation

𝑎𝑧3 + 𝑏𝑧2 + 𝑐𝑧 + 𝑑 = 0

lie to the left of the imaginary axis in the complex plane, then

𝑎𝑏 > 0, 𝑏𝑐 − 𝑎𝑑 > 0, 𝑎𝑑 > 0

Problem 37 (IrMO 1992). If, for 𝑘 = 1, 2,… , 𝑛, 𝑎𝑘 and 𝑏𝑘 are positive real numbers,
prove that

𝑛√𝑎1𝑎2 ⋯𝑎𝑛 + 𝑛√𝑏1𝑏2 ⋯𝑏𝑛 ≤ 𝑛√(𝑎1 + 𝑏1) (𝑎2 + 𝑏2)⋯ (𝑎𝑛 + 𝑏𝑛)

and that equality holds if, and only if,
𝑎1
𝑏1

= 𝑎2
𝑏2

= ⋯ = 𝑎𝑛
𝑏𝑛

Problem 38 (IrMO 1992). Describe in geometric terms the set of points (𝑥, 𝑦) in the
plane such that 𝑥 and 𝑦 satisfy the condition 𝑡2 + 𝑦𝑡 + 𝑥 ≥ 0 for all 𝑡 with −1 ≤ 𝑡 ≤ 1

Problem 39 (IrMO 1991). Let

𝑎𝑛 = 𝑛2 + 1√
𝑛4 + 4

, 𝑛 = 1, 2, 3,…
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and let 𝑏𝑛 be the product of 𝑎1, 𝑎2, 𝑎3,… , 𝑎𝑛. Prove that

𝑏𝑛√
2
=

√
𝑛2 + 1√

𝑛2 + 2𝑛 + 2
and deduce that 1

𝑛3 + 1 < 𝑏𝑛√
2
− 𝑛

𝑛 + 1 < 1
𝑛3

for all positive integers 𝑛

Problem 40 (IrMO 1990). The real number 𝑥 satisfies all the inequalities

2𝑘 < 𝑥𝑘 + 𝑥𝑘+1 < 2𝑘+1

for 𝑘 = 1, 2,… , 𝑛. What is the greatest possible value of 𝑛?

Problem 41 (IrMO 1989). Suppose 𝑃 is a point in the interior of a triangle 𝐴𝐵𝐶,
that 𝑥, 𝑦, 𝑧 are the distances from 𝑃 to 𝐴,𝐵,𝐶, respectively, and that 𝑝, 𝑞, 𝑟 are the
perpendicular distances from 𝑃 to the sides 𝐵𝐶,𝐶𝐴,𝐴𝐵 respectively. Prove that 𝑥𝑦𝑧 ≥
8𝑝𝑞𝑟 with equality implying that the triangle 𝐴𝐵𝐶 is equilateral.

Problem 42 (IrMO 1988). Let 0 ≤ 𝑥 ≤ 1. Show that if 𝑛 is any positive integer, then

(1 + 𝑥)𝑛 ≥ (1 − 𝑥)𝑛 + 2𝑛𝑥 (1 − 𝑥2)
𝑛−1
2
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