
IRMO NUMBER THEORY

ADAM KELLY, OCTOBER 28, 2020

Remark. This is a collection of all number theory problems that have appeared in the
Irish Mathematical Olympiad and the Irish EGMO selection test. The questions are
ordered chronologically. All problems are due to their respective creators.

EGMO Selection Test Problems
Problem 1 (EGMO TST 2020). Let 𝑎, 𝑏, 𝑐 be integers such that 𝑎−𝑐 is even and 𝑏−𝑐
is divisible by 3. Show that 𝑎𝑛2

2 + 𝑏𝑛3

3 + 𝑐𝑛
6

is an integer for every integer 𝑛.

Problem 2 (EGMO TST 2020). Note that the integers 6, 10, 15 have the property that
any two of them have a common divisor greater than 1, but the only common divisor of
all three is 1

(a) Find four integers with the property that any pair of them has a common divisor
greater than 1, but no triple of them has a common divisor greater than 1.

(b) Do there exist 2020 integers with the property that every collection of 1010 of
them has a common divisor greater than 1, but no collection of 1011 of them has
a common divisor greater than 1?

Problem 3 (EGMO TST 2020). The triple (1, 5, 7) is such that the squares (1, 25, 49)
are in arithmetic progression. Show that there are infinitely many triples of positive
integers (𝑎, 𝑏, 𝑐) with greatest common divisor 1 such that 𝑎2, 𝑏2 and 𝑐2 are in arithmetic
progression.

Problem 4 (EGMO TST 2020). Show that there are no integers 𝑥, 𝑦 satisfying 𝑥2 +
𝑥𝑦 − 3𝑦2 = 2020

Problem 5 (EGMO TST 2019). Finn has 5 distinct real numbers. He takes the sum
of each pair of numbers and writes down the 10 sums. The 3 smallest sums are 30, 34
and 35, while the 2 largest are 46 and 49.

Determine, with proof, the largest of Finn’s 5 numbers.

Problem 6 (EGMO TST 2019). For an integer 𝑟 ≥ 2, define 𝑠(𝑟) to be the smallest
prime number that divides 𝑟 Show that for any integer 𝑛 ≥ 2

𝑛
∑
𝑟=2

𝑠(𝑟) ≥ 3𝑛 − 5

Problem 7 (EGMO TST 2018). Are there any positive integers 𝑛 and 𝑚 such that the
integer 32𝑛 + 3125𝑚 is a prime number?

Problem 8 (EGMO TST 2018). How many different pairs of integers (𝑥, 𝑦) satisfy the
equation 10𝑥2 + 29𝑥𝑦 + 21𝑦2 = 15?
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Write down 3 such pairs.

Problem 9 (EGMO TST 2018). Suppose 𝑛 is a positive integer, such that all the digits
of 72𝑛, written in decimal notation, are 0′s and 1 ’s. Find the smallest such 𝑛.

Problem 10 (EGMO TST 2017). A positive integer is said to be near-square if it is a
product of two positive integers differing by 1. For example, 20 is a near-square because
20 = 4 × 5. Prove that every near-square integer can be expressed as the ratio of two
other near-square positive integers.

Problem 11 (EGMO TST 2017). Determine with proof all prime numbers 𝑝 for which
7𝑝 + 4 is the square of an integer.

Problem 12 (EGMO TST 2017). (a) Simplify (𝑥2 − 1)2+(𝑥2 + 2𝑥)2−(𝑥2 + 𝑥 + 1)2

and then factor the result as far as possible.

(b) Show that there are infinitely many pairs of integers 𝑚,𝑛 for which 𝑚2 +𝑛2 −𝑚𝑛
is the square of an integer.

Problem 13 (EGMO TST 2017). Let 𝑝, 𝑞, 𝑟 be prime numbers with

𝑝 < 𝑞 < 𝑟 < 𝑞 + 𝑝4 and 𝑝𝑞2 = 𝑟2 + 1

Find, with proof, all possible values for 𝑝, 𝑞 and 𝑟

Problem 14 (EGMO TST 2016). The function 𝜇 is defined on the set of positive inte-
gers as follows:

• 𝜇(1) = 1 and 𝜇(𝑝) = −1 for any prime number 𝑝

• 𝜇(𝑎𝑏) = 𝜇(𝑎)𝜇(𝑏) for any positive integers with gcd(𝑎, 𝑏) = 1

• 𝜇(𝑛) = 0 if 𝑛 is a positive integer which is divisible with a square of a prime number.

(For instance 𝜇(15) = 𝜇(3)𝜇(5) = 1 and 𝜇(12) = 0, because 12 is divisible with 22 ).
Prove that for any positive integer 𝑛 > 1, we have ∑𝑑|𝑛 𝜇(𝑑) = 0

Problem 15 (EGMO TST 2016). I have two egg timers. The first can time an interval
of exactly 7 minutes. The second can time an interval of exactly 9 minutes. Explain
how I can use them to boil an egg for exactly 3 minutes?

Problem 16 (EGMO TST 2016). (a) Show that the greatest common divisor of (𝑛+
1)! + 1 and 𝑛! + 1 is 1, for all integers 𝑛 ≥ 1

(b) For any 𝑛 > 1, find integers 𝑥, 𝑦 such that

((𝑛 + 1)! + 1)𝑥 + (𝑛! + 1)𝑦 = 1

[Recall that 𝑛! = 1 × 2 × ⋯× 𝑛 for any 𝑛 > 1.]

Problem 17 (EGMO TST 2016). Richard and nine other people are standing in a cir-
cle. All ten of them think of an integer (that may be negative) and whisper their number
to both of their neighbours. Afterwards, they each state the average of the two numbers
that were whispered in their ear.

Richard states the number 10, his right neighbour states the number 9, the next person
along the circle states the number 8, and so on, finishing with Richard’s left neighbour
who states the number 1.
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What number did Richard have in mind?

Problem 18 (EGMO TST 2016). For each positive integer 𝑛 let 𝑠𝑛 = 𝑛! + 20!

(a) Let 𝑞 > 20 be a prime number. Prove that there are only a finite number of positive
integers 𝑘 for which 𝑞 divides 𝑠𝑘

(b) Find with proof all prime numbers 𝑝 for which there exists a positive integer 𝑚
such that 𝑝 divides 𝑠𝑚 and 𝑠𝑚+1.

Problem 19 (EGMO TST 2016). For a real number 𝑥 denote by [𝑥] the greatest inte-
ger not exceeding 𝑥

(a) Find with proof all positive integers 𝑘 for which [ 3√𝑘3 + 20𝑘] ≠ 𝑘

(b) Prove that if 𝑛 is a positive integer, then [𝑛 + √𝑛 + 1
2 ] is not the square of an

integer.

Problem 20 (EGMO TST 2015). Determine all triples (𝑎, 𝑏, 𝑐) of positive integers sat-
isfying both of the following properties:

• We have 𝑎 < 𝑏 < 𝑐, and 𝑎, 𝑏 and 𝑐 are three consecutive odd integers;

• The number 𝑎2 + 𝑏2 + 𝑐2 consists of four equal digits.

Problem 21 (EGMO TST 2015). (a) Find with proof all integers 𝑥, 𝑦 such that

𝑥2 + 𝑥2 + 𝑥2

3
is a prime number.

(b) Prove that if 𝑥 and 𝑦 are integers, then

𝑥4 + 𝑥2𝑦2 + 𝑦4
5

is not a prime number.

Problem 22 (EGMO TST 2015). A triangle has angles of 36∘, 72∘ and 72∘. Prove that
it has at least one side whose length is not an integer.

Problem 23 (EGMO TST 2015). Find with proof all positive integers 𝑘 such that, for
𝑛 = 2𝑘, every prime number which divides 𝑛! + 1 also divides 𝑛 + 1

Problem 24 (EGMO TST 2014). (a) Prove that if 𝑛 is a positive integer, then 𝑛𝑛 +
(𝑛 + 1)𝑛 is not divisible by 2014

(b) Find a positive integer 𝑚 for which 𝑚𝑚 + (𝑚+ 2)𝑚 is divisible by 2014

(c) Find with proof the least positive integer 𝑘 for which 𝑘𝑘(𝑘+1)𝑘 is divisible by 2014

Problem 25 (EGMO TST 2014). The length of each side of a triangle is an integer
and is a divisor of the perimeter of the triangle. Prove that the triangle is equilateral.

Problem 26 (EGMO TST 2014). Show that it is not possible to find 14 consecutive
integers such that each of them is divisible by at least one of the numbers 2, 3, 5, 7, 11

Problem 27 (EGMO TST 2014). Show that

1 + 1
2 + ⋯+ 1

𝑛
is not an integer for any 𝑛 > 1
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Problem 28 (EGMO TST 2014). Let {𝑝𝑛} be the increasing sequence of prime num-
bers, that is, 𝑝1 = 2, 𝑝2 = 3, 𝑝3 = 5, 𝑝4 = 7,… Prove that for all integers 𝑘 > 2, we
have

(a) 𝑝𝑘+9 ≥ 3𝑘 + 25

(b) 𝑝𝑘+1 ≤ 1 + 𝑝1𝑝2 ⋯𝑝𝑘
(c) 𝑝𝑘+1 < 𝑝𝑘−1

√𝑝1𝑝2 ⋯𝑝𝑘
Problem 29 (EGMO TST 2013). We say that a positive integer is triangular if it is
the sum of some positive consecutive integers starting from 1 (thus, 1 = 1, 3 = 1+2, 6 =
1+ 2+ 3, 10 = 1+ 2+ 3+ 4 are triangular numbers). Prove that if 𝑛 is triangular, then
so is 25𝑛 + 3

Problem 30 (EGMO TST 2013). We are given a set 𝑋 containing 100 integers, none
of which is divisible by 3. We are asked to carry out the following task: choose 7 integers
from this set so that for any pair of integers 𝑥 and 𝑦 we choose, the difference 𝑥 − 𝑦 is
not divisible by 9.

(a) Prove that this task is impossible.

(b) If we are instead asked to choose 6 integers from 𝑋, is the task always possible?

Problem 31 (EGMO TST 2013). Let 𝑥, 𝑦 be positive integers with

3𝑥 + 4𝑦 + 𝑥𝑦 = 2012

(a) Prove that 𝑥 + 𝑦 ≥ 83

(b) Prove also that the same inequality is valid if 2012 is replaced by 2013 .

Problem 32 (EGMO TST 2013). We would like to place stamps worth exactly 𝑛 cents
on an envelope. However, there are only 5 -cent and 12 -cent stamps available to us
(although we have an unlimited supply of both of these stamps). Prove that we can
perform the task provided 𝑛 ≥ 44

Problem 33 (EGMO TST 2012). Suppose 251 numbers are chosen from 1, 2, 3,… , 499, 500.
Show that, no matter how the numbers are chosen, there must be two that are consec-
utive.

Problem 34 (EGMO TST 2012). Prove or disprove: For every positive integer 𝑛, the
greatest common divisor of 5𝑛 + 4 and 9𝑛 − 7 is 1

Problem 35 (EGMO TST 2012). Suppose that 𝑎 and 𝑚 are integers larger than 1.
Prove that the greatest common divisor of the pair 𝑎− 1 and 𝑚 is equal to the greatest
common divisor of the pair of integers 𝑎 − 1 and (𝑎𝑚 − 1) /(𝑎 − 1)

Problem 36 (EGMO TST 2012). We say that a positive integer is triangular if it is
the sum of some positive consecutive integers starting from 1( thus, 1 = 1, 3 = 1+2, 6 =
1 + 2 + 3, 10 = 1 + 2 + 3 + 4 are triangular numbers). We denote by

𝑡1 < 𝑡2 < ⋯ < 𝑡𝑛 < ⋯

the sequence of all triangular numbers. Prove that for all 𝑛 ≥ 1 we have

1 ⋅ 𝑡1 + 2 ⋅ 𝑡2 +…𝑛 ⋅ 𝑡𝑛 = 𝑛(𝑛 + 1)(𝑛 + 2)(3𝑛 + 1)
24
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Problem 37 (EGMO TST 2012). Let 𝑘 be a positive integer and 𝑝1 = 2 < 𝑝2 < ⋯ <
𝑝𝑘 be the first 𝑘 prime numbers and let 𝑀 = 1 + 𝑝1𝑝2 ⋯𝑝𝑘 Prove the following:

(a) 𝑀 is not the square of an integer;

(b) 𝑀 is not the cube of an integer;

(c) 𝑀 is not the 𝑞th power of an integer for any 𝑞 ∈ {𝑝1, 𝑝2,… , 𝑝𝑘}

Problem 38 (EGMO TST 2012). (a) Prove that there exist infinitely many primes
of the form 6𝑛 − 1, with 𝑛 an integer.

(b) Let 𝑆 be the set of all integers of the form 𝑎2 +𝑎𝑏+ 𝑏2, where 𝑎 and 𝑏 are integers.
Prove the following:

i. If 𝑥 and 𝑦 are in 𝑆, then 𝑥𝑦 is in 𝑆;

ii. There exist infinitely many primes which are not in S.
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IrMO Problems
Problem 1 (IrMO 2020 Q8). Determine the last (rightmost) three decimal digits of 𝑛
where: 𝑛 = 1 × 3 × 5 × 7 ×…× 2019.

Problem 2 (IrMO 2020 Q7). Let N denote the strictly positive integers. A function
𝑓 ∶ N → N satisfies the following for all 𝑛 ∈ N

𝑓(1) = 1
𝑓(𝑓(𝑛)) = 𝑛
𝑓(2𝑛) = 2𝑓(𝑛) + 1.

Find the value of 𝑓(2020).

Problem 3 (IrMO 2020 Q1). We say an integer 𝑛 is naoish if 𝑛 ≥ 90 and the second-
to-last digit of 𝑛 (in decimal notation) is equal to 9. For example, 10798, 1999 and 90
are naoish, whereas 9900, 2009 and 9 are not. Nino expresses 2020 as a sum:

2020 = 𝑛1 + 𝑛2 +…+ 𝑛𝑘

where each of the 𝑛𝑗 is naoish.

What is the smallest positive number 𝑘 for which Nino can do this?

Problem 4 (IrMO 2019 Q1). Define the quasi-primes as follows.

• The first quasi-prime is 𝑞1 = 2

• For 𝑛 ≥ 2, the 𝑛th quasi-prime 𝑞𝑛 is the smallest integer greater than 𝑞𝑛−1 and
not of the form 𝑞𝑖𝑞𝑗 for some 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛 − 1

Determine, with proof, whether or not 1000 is a quasi-prime.

Problem 5 (IrMO 2019 Q6). The number 2019 has the following nice properties:

(a) It is the sum of the fourth powers of five distinct positive integers.

(b) It is the sum of six consecutive positive integers.

In fact,

2019 = 14 + 24 + 34 + 54 + 64

2019 = 334 + 335 + 336 + 337 + 338 + 339

Prove that 2019 is the smallest number that satisfies both (a) and (b). (You may assume
that ( 1) and ( 2) are correct!)

Problem 6 (IrMO 2018 Q1). Mary and Pat play the following number game. Mary
picks an initial integer greater than 2017. She then multiplies this number by 2017 and
adds 2 to the result. Pat will add 2019 to this new number and it will again be Mary’s
turn. Both players will continue to take alternating turns. Mary will always multiply the
current number by 2017 and add 2 to the result when it is her turn. Pat will always add
2019 to the current number when it is his turn. Pat wins if one of the numbers obtained
is divisible by 2018. Mary wants to prevent Pat from winning the game. Determine,
with proof, the smallest initial integer Mary could choose in order to achieve this.

6 ADAM KELLY, OCTOBER 28, 2020
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Problem 7 (IrMO 2018 Q9). The sequence of positive integers 𝑎1, 𝑎2, 𝑎3,… satisfies

𝑎𝑛+1 = 𝑎2𝑛 + 2018 for 𝑛 ≥ 1

Prove that there exists at most one 𝑛 for which 𝑎𝑛 is the cube of an integer.

Problem 8 (IrMO 2017 Q1). Determine, with proof, the smallest positive multiple of
99 all of whose digits are either 1 or 2

Problem 9 (IrMO 2017 Q5). The sequence 𝑎 = (𝑎0, 𝑎1, 𝑎2,…) is defined by 𝑎0 = 0, 𝑎1 =
2 and 𝑎𝑛+2 = 2𝑎𝑛+1 + 41𝑎𝑛 for all 𝑛 ≥ 0

Prove that 𝑎2016 is divisible by 2017 .

Problem 10 (IrMO 2017 Q6). Does there exist an even positive integer 𝑛 for which
𝑛 + 1 is divisible by 5 and the two numbers 2𝑛 + 𝑛 and 2𝑛 − 1 are co-prime?

Problem 11 (IrMO 2016 Q1). If the three-digit number 𝐴𝐵𝐶 is divisible by 27, prove
that the three-digit numbers 𝐵𝐶𝐴 and 𝐶𝐴𝐵 are also divisible by 27

Problem 12 (IrMO 2016 Q7). A rectangular array of positive integers has four rows.
The sum of the entries in each column is 20. Within each row, all entries are distinct.
What is the maximum possible number of columns?

Problem 13 (IrMO 2016 Q9). Show that the number

( 251
1

3√252−5 3√2 − 10 3√63 + 1
251

3√252+5 3√2 + 10 3√63)
3

is an integer and find its value.

Problem 14 (IrMO 2015 Q3). Find all positive integers 𝑛 for which both 837 +𝑛 and
837 − 𝑛 are cubes of positive integers.

Problem 15 (IrMO 2015 Q7). Let 𝑛 > 1 be an integer and Ω ∶= {1, 2,… , 2𝑛 − 1, 2𝑛}
the set of all positive integers that are not larger than 2𝑛.

A nonempty subset 𝑆 of Ω is called sum-free if, for all elements 𝑥, 𝑦 belonging to 𝑆, 𝑥+𝑦
does not belong to 𝑆. We allow 𝑥 = 𝑦 in this condition. Prove that Ω has more than 2𝑛
distinct sum-free subsets.

Problem 16 (IrMO 2014 Q2). Prove for all integers 𝑁 > 1 that (𝑁2)2014 − (𝑁11)106

is divisible by 𝑁6 +𝑁3 + 1

Problem 17 (IrMO 2014 Q2). Each of the four positive integers 𝑁,𝑁+1,𝑁+2,𝑁+3
has exactly six positive divisors. There are exactly 20 different positive numbers which
are exact divisors of at least one of the numbers. One of these is 27. Find all possible
values of 𝑁 (Both 1 and 𝑚 are counted as divisors of the number 𝑚. )

Problem 18 (IrMO 2013 Q1). Find the smallest positive integer 𝑚 such that 5𝑚 is an
exact 5th power, 6𝑚 is an exact 6th power, and 7𝑚 is an exact 7th power.

Problem 19 (IrMO 2013 Q8). Find the smallest positive integer 𝑁 for which the equa-
tion (𝑥2 − 1) (𝑦2 − 1) = 𝑁 is satisfied by at least two pairs of integers (𝑥, 𝑦) with
1 < 𝑥 ≤ 𝑦.

7 ADAM KELLY, OCTOBER 28, 2020
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Problem 20 (IrMO 2012 Q6). Let 𝑆(𝑛) be the sum of the decimal digits of 𝑛. For
example, 𝑆(2012) = 2 + 0 + 1 + 2 = 5. Prove that there is no integer 𝑛 > 0 for which
𝑛 − 𝑆(𝑛) = 9990

Problem 21 (IrMO 2011 Q3). The integers 𝑎0, 𝑎1, 𝑎2, 𝑎3,… are defined as follows:

𝑎0 = 1, 𝑎1 = 3, and 𝑎𝑛+1 = 𝑎𝑛 + 𝑎𝑛−1 for all 𝑛 ≥ 1

Find all integers 𝑛 ≥ 1 for which 𝑛𝑎𝑛+1 + 𝑎𝑛 and 𝑛𝑎𝑛 + 𝑎𝑛−1 share a common factor
greater than 1

Problem 22 (IrMO 2011 Q6). Prove that

2
3 + 4

5 + ⋯+ 2010
2011

is not an integer.

Problem 23 (IrMO 2011 Q10). Find with proof all solutions in nonnegative integers
𝑎, 𝑏, 𝑐, 𝑑 of the equation 11𝑎5𝑏 − 3𝑐2𝑑 = 1

Problem 24 (IrMO 2010 Q1). Find the least 𝑘 for which the number 2010 can be
expressed as the sum of the squares of 𝑘 integers.

Problem 25 (IrMO 2010 Q9). Let 𝑛 ≥ 3 be an integer and 𝑎1, 𝑎2,… , 𝑎𝑛 be a finite
sequence of positive integers, such that, for 𝑘 = 2, 3,… , 𝑛

𝑛 (𝑎𝑘 + 1) − (𝑛 − 1)𝑎𝑘−1 = 1

Prove that 𝑎𝑛 is not divisible by (𝑛 − 1)2

Problem 26 (IrMO 2009 Q3). Find all positive integers 𝑛 for which 𝑛8 + 𝑛 + 1 is a
prime number.

Problem 27 (IrMO 2009 Q7). For any positive integer 𝑛 define

𝐸(𝑛) = 𝑛(𝑛 + 1)(2𝑛 + 1)(3𝑛 + 1)⋯ (10𝑛 + 1)

Find the greatest common divisor of 𝐸(1), 𝐸(2), 𝐸(3),… ,𝐸(2009)

Problem 28 (IrMO 2008 Q1). Let 𝑝1, 𝑝2, 𝑝3 and 𝑝4 be four different prime numbers
satisfying the equations 2𝑝1 + 3𝑝2 + 5𝑝3 + 7𝑝4 = 162

11𝑝1 + 7𝑝2 + 5𝑝3 + 4𝑝4 = 162
Find all possible values of the product 𝑝1𝑝2𝑝3𝑝4
Problem 29 (IrMO 2008 Q3). Determine, with proof, all integers 𝑥 for which 𝑥(𝑥 +
1)(𝑥 + 7)(𝑥 + 8) is a perfect square.

Problem 30 (IrMO 2008 Q6). Find, with proof, all triples of integers (𝑎, 𝑏, 𝑐) such that
𝑎, 𝑏 and 𝑐 are the lengths of the sides of a right angled triangle whose area is 𝑎 + 𝑏 + 𝑐

Problem 31 (IrMO 2007 Q1). Find all prime numbers 𝑝 and 𝑞 such that 𝑝 divides 𝑞+6
and 𝑞 divides 𝑝 + 7

Problem 32 (IrMO 2007 Q5). Let 𝑟 and 𝑛 be nonnegative integers such that 𝑟 ≤ 𝑛

8 ADAM KELLY, OCTOBER 28, 2020
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(a) Prove that 𝑛 + 1 − 2𝑟
𝑛 + 1 − 𝑟 ( 𝑛

𝑟 )

is an integer.

(b) Prove that ⌊𝑛/2⌋
∑
𝑟=0

𝑛 + 1 − 2𝑟
𝑛 + 1 − 𝑟 ( 𝑛

𝑟 ) < 2𝑛−2

for all 𝑛 ≥ 9

Problem 33 (IrMO 2007 Q9). Find the number of zeros in which the decimal expan-
sion of the integer 2007! ends. Also find its last non-zero digit.

Problem 34 (IrMO 2006 Q1). Are there integers 𝑥, 𝑦 and 𝑧 which satisfy the equation

𝑧2 = (𝑥2 + 1) (𝑦2 − 1) + 𝑛

when (a) 𝑛 = 2006 (b) 𝑛 = 2007 ?

Problem 35 (IrMO 2009 Q9). Let 𝑛 be a positive integer. Find the greatest common
divisor of the numbers

(2𝑛
1 ),(2𝑛

3 ),(2𝑛
5 ),… ,( 2𝑛

2𝑛 − 1).

Problem 36 (IrMO 2005 Q1). Prove that 20052005 is a sum of two perfect squares, but
not the sum of two perfect cubes.

Problem 37 (IrMO 2005 Q7). Using only the digits 1, 2, 3, 4 and 5, two players 𝐴,𝐵
compose a 2005 -digit number 𝑁 by selecting one digit at a time as follows: 𝐴 selects
the first digit, 𝐵 the second, 𝐴 the third and so on, in that order. The last to play wins
if and only if 𝑁 is divisible by 9. Who will win if both players play as well as possible?

Problem 38 (IrMO 2005 Q8). Suppose that 𝑥 is an integer and 𝑦, 𝑧, 𝑤 are odd integers.
Show that 17 divides 𝑥𝑦𝑧𝑤 − 𝑥𝑦𝑧

[Note: Given a sequence of integers 𝑎𝑛, 𝑛 = 1, 2,… , the terms 𝑏𝑛, 𝑛 = 1, 2,… , of its se-
quence of ”towers” 𝑎1, 𝑎𝑎1

2 , 𝑎𝑎2
3 , 𝑎𝑎2

4 ,… , are defined recursively as follows: 𝑏1 = 𝑎1, 𝑏𝑛+1 = 𝑎𝑏𝑛𝑛+1, 𝑛 = 1, 2,… .]

Problem 39 (IrMO 2005 Q9). Find the first digit to the left, and the first digit to the
right, of the decimal point in the decimal expansion of (

√
2 +

√
5)2000

Problem 40 (IrMO 2005 Q10). Let 𝑚,𝑛 be odd integers such that 𝑚2−𝑛2+1 divides
𝑛2 − 1. Prove that 𝑚2 − 𝑛2 + 1 is a perfect square.

Problem 41 (IrMO 2004 Q1). (a) For which positive integers 𝑛, does 2𝑛 divide the
sum of the first 𝑛 positive integers?

(b) Determine, with proof, those positive integers 𝑛 (if any) which have the property
that 2𝑛 + 1 divides the sum of the first 𝑛 positive integers.

Problem 42 (IrMO 2004 Q6). Determine all pairs of prime numbers (𝑝, 𝑞), with 2 ≤
𝑝, 𝑞 < 100, such that 𝑝+ 6, 𝑝 + 10, 𝑞 + 4, 𝑞 + 10 and 𝑝 + 𝑞 + 1 are all prime numbers.
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Problem 43 (IrMO 2004 Q8). Suppose 𝑛 is an integer ≥ 2. Determine the first digit
after the decimal point in the decimal expansion of the number

3√𝑛3 + 2𝑛2 + 𝑛

Problem 44 (IrMO 2004 Q10). Suppose 𝑝, 𝑞 are distinct primes and 𝑆 is a subset of
{1, 2,… , 𝑝 − 1}. Let 𝑁(𝑆) denote the number of solutions of the equation

𝑞
∑
𝑖=1

𝑥𝑖 ≡ 0 (mod 𝑝)

where 𝑥𝑖 ∈ 𝑆, 𝑖 = 1, 2,… , 𝑞. Prove that 𝑁(𝑆) is a multiple of 𝑞

Problem 45 (IrMO 2003 Q1). Find all solutions in (not necessarily positive) integers
of the equation (𝑚2 + 𝑛) (𝑚 + 𝑛2) = (𝑚 + 𝑛)3

Problem 46 (IrMO 2003 Q3). For each positive integer 𝑘, let 𝑎𝑘 be the greatest integer
not exceeding

√
𝑘 and let 𝑏𝑘 be the greatest integer not exceeding 3√𝑘. Calculate

2003
∑
𝑘=1

(𝑎𝑘 − 𝑏𝑘)

Problem 47 (IrMO 2003 Q8). Find all solutions in integers 𝑥, 𝑦 of the equation

𝑦2 + 2𝑦 = 𝑥4 + 20𝑥3 + 104𝑥2 + 40𝑥 + 2003

Problem 48 (IrMO 2002 Q3). Find all triples of positive integers (𝑝, 𝑞, 𝑛), with 𝑝 and
𝑞 primes, satisfying 𝑝(𝑝 + 3) + 𝑞(𝑞 + 3) = 𝑛(𝑛 + 3)

Problem 49 (IrMO 2002 Q4). Let the sequence 𝑎1, 𝑎2, 𝑎3, 𝑎4,… be defined by

𝑎1 = 1, 𝑎2 = 1, 𝑎3 = 1

and 𝑎𝑛+1𝑎𝑛−2 − 𝑎𝑛𝑎𝑛−1 = 2
for all 𝑛 ≥ 3. Prove that 𝑎𝑛 is a positive integer for all 𝑛 ≥ 1

Problem 50 (IrMO 2002 Q7). Suppose 𝑛 is a product of four distinct primes 𝑎, 𝑏, 𝑐, 𝑑
such that

𝑎 + 𝑐 = 𝑑𝑎(𝑎 + 𝑏 + 𝑐 + 𝑑) = 𝑐(𝑑 − 𝑏)1 + 𝑏𝑐 + 𝑑 = 𝑏𝑑

Determine 𝑛

Problem 51 (IrMO 2002 Q9). For each real number 𝑥, define ⌊𝑥⌋ to be the greatest
integer less than or equal to 𝑥 Let 𝛼 = 2 +

√
3. Prove that

𝛼𝑛 − ⌊𝛼𝑛⌋ = 1 − 𝛼−𝑛, for 𝑛 = 0, 1, 2,…
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Problem 52 (IrMO 2001 Q1). Find, with proof, all solutions of the equation

2𝑛 = 𝑎! + 𝑏! + 𝑐!

in positive integers 𝑎, 𝑏, 𝑐 and 𝑛.

Problem 53 (IrMO 2001 Q3). Prove that if an odd prime number 𝑝 can be expressed
in the form 𝑥5 − 𝑦5, for some integers 𝑥, 𝑦, then

√4𝑝 + 1
5 = 𝑣2 + 1

2
for some odd integer 𝑣

Problem 54 (IrMO 2001 Q6). Find the least positive integer 𝑎 such that 2001 divides
55𝑛 + 𝑎32𝑛 for some odd integer 𝑛

Problem 55 (IrMO 2001 Q9). Determine, with proof, all non-negative real numbers 𝑥
for which 3√13 +√𝑥 + 3√13 −√𝑥
is an integer.

Problem 56 (IrMO 2000 Q1). Let 𝑆 be the set of all numbers of the form 𝑎(𝑛) =
𝑛2+𝑛+1, where 𝑛 is a natural number. Prove that the product 𝑎(𝑛)𝑎(𝑛+1) is in 𝑆 for
all natural numbers 𝑛 Give, with proof, an example of a pair of elements 𝑠, 𝑡 ∈ 𝑆 such
that 𝑠𝑡 ∉ 𝑆.

Problem 57 (IrMO 2000 Q3). Let 𝑓(𝑥) = 5𝑥13 + 13𝑥5 + 9𝑎𝑥. Find the least positive
integer 𝑎 such that 65 divides 𝑓(𝑥) for every integer 𝑥

Problem 58 (IrMO 2000 Q8). For each positive integer 𝑛 determine with proof, all
positive integers 𝑚 such that there exist positive integers 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑛 with

1
𝑥1

+ 2
𝑥2

+ 3
𝑥3

+⋯+ 𝑛
𝑥𝑛

= 𝑚

Problem 59 (IrMO 2000 Q9). Prove that in each set of ten consecutive integers there
is one which is coprime with each of the other integers. For example, taking 114, 115, 116, 117, 118, 119, 120, 121, 122, 123
the numbers 119 and 121 are each coprime with all the others. [Two integers 𝑎, 𝑏 are
coprime if their greatest common divisor is one. ]

Problem 60 (IrMO 1999 Q2). Show that there is a positive number in the Fibonacci
sequence that is divisible by 1000

Problem 61 (IrMO 1999 Q5). Three real numbers 𝑎, 𝑏, 𝑐 with 𝑎 < 𝑏 < 𝑐, are said to
be in arithmetic progression if 𝑐 − 𝑏 = 𝑏 − 𝑎 Define a sequence 𝑢𝑛, 𝑛 = 0, 1, 2, 3,… as
follows: 𝑢0 = 0, 𝑢1 = 1 and, for each 𝑛 ≥ 1, 𝑢𝑛+1 is the smallest positive integer such that
𝑢𝑛+1 > 𝑢𝑛 and {𝑢0, 𝑢1,… , 𝑢𝑛, 𝑢𝑛+1} contains no three elements that are in arithmetic
progression. Find 𝑢100

Problem 62 (IrMO 1999 Q9). Find all positive integers 𝑚 with the property that the
fourth power of the number of (positive) divisors of 𝑚 equals 𝑚.

Problem 63 (IrMO 1998 Q3). Show that no integer of the form 𝑥𝑦𝑥𝑦 in base 10, where
𝑥 and 𝑦 are digits, can be the cube of an integer. Find the smallest base 𝑏 > 1 for which
there is a perfect cube of the form 𝑥𝑦𝑥𝑦 in base 𝑏
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Problem 64 (IrMO 1998 Q5). If 𝑥 is a real number such that 𝑥2−𝑥 is an integer, and,
for some 𝑛 ≥ 3, 𝑥𝑛 − 𝑥 is also an integer, prove that 𝑥 is an integer.

Problem 65 (IrMO 1998 Q6). Find all positive integers 𝑛 that have exactly 16 positive
integral divisors 𝑑1, 𝑑2 …, 𝑑16 such that

1 = 𝑑1 < 𝑑2 < ⋯ < 𝑑16 = 𝑛

𝑑6 = 18 and 𝑑9 − 𝑑8 = 17

Problem 66 (IrMO 1997 Q1). Find, with proof, all pairs of integers (𝑥, 𝑦) satisfying
the equation 1 + 1996𝑥 + 1998𝑦 = 𝑥𝑦

Problem 67 (IrMO 1997 Q5). Let 𝑆 be the set of all odd integers greater than one. For
each 𝑥 ∈ 𝑆, denote by 𝛿(𝑥) the unique integer satisfying the inequality 2𝛿(𝑥) < 𝑥 < 2𝛿(𝑥)+1

For 𝑎, 𝑏 ∈ 𝑆, define 𝑎 ∗ 𝑏 = 2𝛿(𝑎)−1(𝑏 − 3) + 𝑎

[For example, to calculate 5 ∗ 7, note that 22 < 5 < 23, so 𝛿(5) = 2, and hence 5 ∗ 7 =
22−1(7 − 3) + 5 = 13 Also 22 < 7 < 23, so 𝛿(7) = 2 and 7 ∗ 5 = 22−1(5 − 3) + 7 = 11]

Prove that if 𝑎, 𝑏, 𝑐 ∈ 𝑆, then

(a) 𝑎 ∗ 𝑏 ∈ 𝑆 and

(b) (𝑎 ∗ 𝑏) ∗ 𝑐 = 𝑎 ∗ (𝑏 ∗ 𝑐)

Problem 68 (IrMO 1997 Q6). Given a positive integer 𝑛, denote by 𝜎(𝑛) the sum of
all positive integers which divide 𝑛. [For example, 𝜎(3) = 1+3 = 4, 𝜎(6) = 1+2+3+6 =
12, 𝜎(12) = 1+2+3+4+6+12 = 28] We say that 𝑛 is abundant if 𝜎(𝑛) > 2𝑛. (So, for
example, 12 is abundant). Let 𝑎, 𝑏 be positive integers and suppose that 𝑎 is abundant.
Prove that 𝑎𝑏 is abundant.

Problem 69 (IrMO 1996 Q1). For each positive integer 𝑛, let 𝑓(𝑛) denote the highest
common factor of 𝑛! + 1 and (𝑛 + 1)! (where ! denotes factorial). Find, with proof, a
formula for 𝑓(𝑛) for each 𝑛.

Problem 70 (IrMO 1996 Q2). For each positive integer 𝑛, let 𝑆(𝑛) denote the sum of
the digits of 𝑛 when 𝑛 is written in base ten. Prove that, for every positive integer 𝑛

𝑆(2𝑛) ≤ 2𝑆(𝑛) ≤ 10𝑆(2𝑛)

Prove also that there exists a positive integer 𝑛 with

𝑆(𝑛) = 1996𝑆(3𝑛)

Problem 71 (IrMO 1996 Q6). The Fibonacci sequence 𝐹0, 𝐹1, 𝐹2,… is defined as fol-
lows: 𝐹0 = 0, 𝐹1 = 1 and for all 𝑛 ≥ 0

𝐹𝑛+2 = 𝐹𝑛 + 𝐹𝑛+1

Prove that

(a) The statement “𝐹𝑛+𝑘 − 𝑓𝑛 is divisible by 10 for all positive integers 𝑛” is true if
𝑘 = 60, but not true for any positive integer 𝑘 < 60.
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(b) The statement “𝐹𝑛+𝑡 −𝐹𝑛” is divisibly by 100 for all positive integers 𝑛” is true if
𝑡 = 300, but no true for any positive integer 𝑡 < 300.

Problem 72 (IrMO 1996 Q8). Let 𝑝 be a prime number, and 𝑎 and 𝑛 positive integers.
Prove that if 2𝑝 + 3𝑝 = 𝑎𝑛

then 𝑛 = 1

Problem 73 (IrMO 1995 Q2). Determine, with proof, all those integers 𝑎 for which
the equation 𝑥2 + 𝑎𝑥𝑦 + 𝑦2 = 1

Thas infinitely many distinct integer solutions 𝑥, 𝑦.

Problem 74 (IrMO 1995 Q10). For each integer 𝑛 such that 𝑛 = 𝑝1𝑝2𝑝3𝑝4, where
𝑝1, 𝑝2, 𝑝3, 𝑝4 are distinct primes, let

𝑑1 = 1 < 𝑑2 < 𝑑3 < ⋯ < 𝑑15 < 𝑑16 = 𝑛

be the sixteen positive integers that divide 𝑛. Prove that if 𝑛 < 1995, then 𝑑9−𝑑8 ≠ 22.

Problem 75 (IrMO 1994 Q1). Let 𝑥, 𝑦 be positive integers, with 𝑦 > 3, and

𝑥2 + 𝑦4 = 2 [(𝑥 − 6)2 + (𝑦 + 1)2]

Prove that 𝑥2 + 𝑦4 = 1994

Problem 76 (IrMO 1994 Q6). A sequence 𝑥𝑛 is defined by the rules: 𝑥1 = 2 and

𝑛𝑥𝑛 = 2(2𝑛 − 1)𝑥𝑛−1, 𝑛 = 2, 3,…

Prove that 𝑥𝑛 is an integer for every positive integer 𝑛

Problem 77 (IrMO 1993 Q2). A natural number 𝑛 is called good if it can be written in
a unique way simultaneously as the sum 𝑎1 +𝑎2 +…+𝑎𝑘 and as the product 𝑎1𝑎2 …𝑎𝑘
of some 𝑘 ≥ 2 natural numbers 𝑎1, 𝑎2,… , 𝑎𝑘. (For example 10 is good because 10 =
5 + 2 + 1 + 1 + 1 = 5.2.1.1.1 and these expressions are unique.) Determine, in terms of
prime numbers, which natural numbers are good.

Problem 78 (IrMO 1992 Q6). Let 𝑛 > 2 be an integer and let 𝑚 = ∑𝑘3, where the
sum is taken over all integers 𝑘 with 1 ≤ 𝑘 < 𝑛 that are relatively prime to 𝑛. Prove that
𝑛 divides 𝑚. (Note that two integers are relatively prime if, and only if, their greatest
common divisor equals 1.)

Problem 79 (IrMO 1992 Q7). If 𝑎1 is a positive integer, form the sequence 𝑎1, 𝑎2, 𝑎3,…
by letting 𝑎2 be the product of the digits of 𝑎1, etc. If 𝑎𝑘 consists of a single digit, for
some 𝑘 ≥ 1, 𝑎𝑘 is called a digital root of 𝑎1. It is easy to check that every positive integer
has a unique digital root. (For example, if 𝑎1 = 24378, then 𝑎2 = 1344, 𝑎3 = 48, 𝑎4 = 32
𝑎5 = 6, and thus 6 is the digital root of 24378. Prove the digital root of a positive integer
𝑛 equals 1 if, and only if, all the digits of 𝑛 equal 1

Problem 80 (IrMO 1991 Q6). The sum of two consecutive squares can be a square:
for instance, 32 + 42 = 52

(a) Prove that the sum of 𝑚 consecutive squares cannot be a square for the cases

𝑚 = 3, 4, 5, 6
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(b) Find an example of eleven consecutive squares whose sum is a square.

Problem 81 (IrMO 1990 Q2). A sequence of primes 𝑎𝑛 is defined as follows: 𝑎1 = 2,
and, for all 𝑛 ≥ 2, 𝑎𝑛 is the largest prime divisor of 𝑎1𝑎2 ⋯𝑎𝑛−1 + 1. Prove that 𝑎𝑛 ≠ 5
for all 𝑛

Problem 82 (IrMO 1990 Q6). Let 𝑛 be a natural number, and suppose that the equa-
tion 𝑥1𝑥2 + 𝑥2𝑥3 + 𝑥3𝑥4 + 𝑥4𝑥5 +⋯+ 𝑥𝑛−1𝑥𝑛 + 𝑥𝑛𝑥1 = 0
has a solution with all the 𝑥𝑖 ’s equal to ±1. Prove that 𝑛 is divisible by 4.

Problem 83 (IRMO 1990 Q7). Suppose that 𝑝1 < 𝑝2 < … < 𝑝15 are prime numbers in
arithmetic progression, with common difference 𝑑. Prove that 𝑑 is divisible by 2, 3, 5, 7, 11
and 13

Problem 84 (IrMO 1989 Q2). A 3× 3 magic square, with magic number 𝑚, is a 3× 3
matrix such that the entries on each row, each column and each diagonal sum to 𝑚.
Show that if the square has positive integer entries, then 𝑚 is divisible by 3, and each
entry of the square is at most 2𝑛 − 1, where 𝑚 = 3𝑛.

An example of a magic square with 𝑚 = 6 is

⎛⎜⎜
⎝

2 1 3
3 2 1
1 3 2

⎞⎟⎟
⎠

Problem 85 (IrMO 1989 Q4). Note that 122 = 144 end in two 4 ’s and 382 = 1444
end in three 4′ ’s. Determine the length of the longest string of equal nonzero digits in
which the square of an integer can end.

Problem 86 (IrMO 1989 Q5). Let 𝑥 = 𝑎1𝑎2 …𝑎𝑛 be an 𝑛 -digit number, where 𝑎1, 𝑎2,… , 𝑎𝑛 (𝑎1 ≠ 0)
are the digits. The 𝑛 numbers

𝑥1 = 𝑥 = 𝑎1𝑎2 …𝑎𝑛,𝑥2 = 𝑎𝑛𝑎1 …𝑎𝑛−1, 𝑥3 = 𝑎𝑛−1𝑎𝑛𝑎1 …𝑎𝑛−2

𝑥4 = 𝑎𝑛−2𝑎𝑛−1𝑎𝑛𝑎1 …𝑎𝑛−3,… , 𝑥𝑛 = 𝑎2𝑎3 …𝑎𝑛𝑎1
are said to be obtained from 𝑥 by the cyclic permutation of digits. [For example, if
𝑛 = 5 and 𝑥 = 37001, then the numbers are 𝑥1 = 37001, 𝑥2 = 13700, 𝑥3 = 01370(=
1370), 𝑥4 = 00137(= 137), 𝑥5 = 70013. Find, with proof, (i) the smallest natural number
𝑛 for which there exists an 𝑛− digit number 𝑥 such that the 𝑛 numbers obtained from 𝑥
by the cyclic permutation of digits are all divisible by 1989; and (ii) the smallest natural
number 𝑥 with this property.

Problem 87 (IrMO 1989 Q9). Let 𝑎 be a positive real number, and let

𝑏 = 3√𝑎+√𝑎2 + 1 + 3√𝑎−√𝑎2 + 1

Prove that 𝑏 is a positive integer if, and only if, 𝑎 is a positive integer of the form
1
2𝑛 (𝑛2 + 3) , for some positive integer 𝑛

Problem 88 (IrMO 1988 Q8). Let 𝑥1, 𝑥2, 𝑥3,… be a sequence of nonzero real numbers
satisfying 𝑥𝑛 = 𝑥𝑛−2𝑥𝑛−1

2𝑥𝑛−2 − 𝑥𝑛−1
, 𝑛 = 3, 4, 5,…

Establish necessary and sufficient conditions on 𝑥1, 𝑥2 for 𝑥𝑛 to be an integer for infinitely
many values of 𝑛
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Problem 89 (1988 Q9). The year 1978 was ”peculiar” in that the sum of the numbers
formed with the first two digits and the last two digits is equal to the number formed
with the middle two digits, i.e., 19+ 78 = 97. What was the last previous peculiar year,
and when will the next one occur?

Problem 90 (1988 Q14). Let 𝑥1,… , 𝑥𝑛 be 𝑛 integers, and let 𝑝 be a positive integer,
with 𝑝 < 𝑛. Put 𝑆1 = 𝑥1 + 𝑥2 +…+ 𝑥𝑝

𝑇1 = 𝑥𝑝+1 + 𝑥𝑝+2 +…+ 𝑥𝑛

𝑆2 = 𝑥2 + 𝑥3 +…+ 𝑥𝑝+1

𝑇2 = 𝑥𝑝+2 + 𝑥𝑝+3 +…+ 𝑥𝑛 + 𝑥1

⋮
𝑆𝑛 = 𝑥𝑛 + 𝑥1 + 𝑥2 +…+ 𝑥𝑝−1

𝑇𝑛 = 𝑥𝑝 + 𝑥𝑝+1 +…+ 𝑥𝑛−1

For 𝑎 = 0, 1, 2, 3, and 𝑏 = 0, 1, 2, 3, let 𝑚(𝑎, 𝑏) be the number of numbers 𝑖, 1 ≤ 𝑖 ≤ 𝑛,
such that 𝑆𝑖 leaves remainder 𝑎 on division by 4 and 𝑇𝑖 leaves remainder 𝑏 on division
by 4. Show that 𝑚(1, 3) and 𝑚(3, 1) leave the same remainder when divided by 4 if, and
only if, 𝑚(2, 2) is even.
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